메뉴 건너뛰기




Volumn 35, Issue 6, 2012, Pages 499-509

The effect of a gradual response to the environment on species distribution modeling performance

Author keywords

[No Author keywords available]

Indexed keywords

ECOLOGICAL THEORY; ECOSYSTEM MODELING; ENVIRONMENTAL GRADIENT; GRADUALISM; GUIDELINE; PERFORMANCE ASSESSMENT; PROBABILITY; SPATIAL DISTRIBUTION; TECHNOLOGICAL DEVELOPMENT; THEORETICAL STUDY;

EID: 84861724653     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2011.07157.x     Document Type: Article
Times cited : (38)

References (42)
  • 1
    • 49749125937 scopus 로고    scopus 로고
    • Favourability functions versus probability of presence: advantages and misuses
    • Albert C. H. and Thuiller W. 2008. Favourability functions versus probability of presence: advantages and misuses. Ecography 31: 417-422.
    • (2008) Ecography , vol.31 , pp. 417-422
    • Albert, C.H.1    Thuiller, W.2
  • 2
    • 33749998362 scopus 로고    scopus 로고
    • Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
    • Austin M. P. 2006. Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199: 197-216.
    • (2006) Ecol. Model. , vol.199 , pp. 197-216
    • Austin, M.P.1
  • 4
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models
    • Elith J. and Graham C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 5
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith J. and Leathwick J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40: 677-697.
    • (2009) Annu. Rev. Ecol. Evol. Syst. , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 6
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith J.. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 7
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J.. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1
  • 8
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding A. H. and Bell J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv. , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 10
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distribution: offering more than simple habitat models
    • Guisan A. and Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
    • (2005) Ecol. Lett. , vol.8 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 11
    • 33645110300 scopus 로고    scopus 로고
    • Using niche-based models to improve the sampling of rare species
    • Guisan A.. 2006. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20: 501-511.
    • (2006) Conserv. Biol. , vol.20 , pp. 501-511
    • Guisan, A.1
  • 13
    • 33750352002 scopus 로고    scopus 로고
    • The effect of sample size and species characteristics on performance of different species distribution modeling methods
    • Hernandez P. A.. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.
    • (2006) Ecography , vol.29 , pp. 773-785
    • Hernandez, P.A.1
  • 14
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel A. H.. 2001. Assessing habitat-suitability models with a virtual species. Ecol. Model. 145: 111-121.
    • (2001) Ecol. Model. , vol.145 , pp. 111-121
    • Hirzel, A.H.1
  • 15
    • 33846215485 scopus 로고    scopus 로고
    • Metacommunities: a framework for large-scale community ecology
    • Holyoak M.(eds), Univ. of Chicago Press.
    • Holyoak M.. 2005. Metacommunities: a framework for large-scale community ecology. - In: Holyoak M. et al. (eds), Metacommunities: spatial dynamics and ecological communities. Univ. of Chicago Press, pp. 1-31.
    • (2005) Metacommunities: spatial dynamics and ecological communities , pp. 1-31
    • Holyoak, M.1
  • 16
    • 34247548344 scopus 로고    scopus 로고
    • Threshold criteria for conversion of probability of species presence to either-or presence-absence
    • Jimenez-Valverde A. and Lobo J. M. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 31: 361-369.
    • (2007) Acta Oecol. , vol.31 , pp. 361-369
    • Jimenez-Valverde, A.1    Lobo, J.M.2
  • 17
    • 73649109908 scopus 로고    scopus 로고
    • The effect of prevalence and its interaction with sample size on the reliability of species distribution models
    • Jimenez-Valverde A.. 2009. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10: 196-205.
    • (2009) Community Ecol. , vol.10 , pp. 196-205
    • Jimenez-Valverde, A.1
  • 18
    • 0346361819 scopus 로고    scopus 로고
    • A systematic analysis of factors affecting the performance of climatic envelope models
    • Kadmon R.. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl. 13: 853-867.
    • (2003) Ecol. Appl. , vol.13 , pp. 853-867
    • Kadmon, R.1
  • 19
    • 20444488428 scopus 로고    scopus 로고
    • Selecting thresholds of occurrence in the prediction of species distributions
    • Liu C. R.. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393.
    • (2005) Ecography , vol.28 , pp. 385-393
    • Liu, C.R.1
  • 20
    • 78651456538 scopus 로고    scopus 로고
    • Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data
    • Lobo J. M. and Tognelli M. F. 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19: 1-7.
    • (2011) J. Nat. Conserv. , vol.19 , pp. 1-7
    • Lobo, J.M.1    Tognelli, M.F.2
  • 21
    • 38949161848 scopus 로고    scopus 로고
    • AUC: a misleading measure of the performance of predictive distribution models
    • Lobo J. M.. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17: 145-151.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 145-151
    • Lobo, J.M.1
  • 22
    • 77953929268 scopus 로고    scopus 로고
    • The uncertain nature of absences and their importance in species distribution modelling
    • Lobo J. M.. 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33: 103-114.
    • (2010) Ecography , vol.33 , pp. 103-114
    • Lobo, J.M.1
  • 24
    • 34848927276 scopus 로고    scopus 로고
    • Does scale matter in predicting species distributions? Case study with the marbled murrelet
    • Meyer C. B. 2007. Does scale matter in predicting species distributions? Case study with the marbled murrelet. Ecol. Appl. 17: 1474-1483.
    • (2007) Ecol. Appl. , vol.17 , pp. 1474-1483
    • Meyer, C.B.1
  • 25
    • 34447638499 scopus 로고    scopus 로고
    • Predicting species distributions: a critical comparison of the most common statistical models using artificial species
    • Meynard C. N. and Quinn J. F. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34: 1455-1469.
    • (2007) J. Biogeogr. , vol.34 , pp. 1455-1469
    • Meynard, C.N.1    Quinn, J.F.2
  • 27
    • 0036096605 scopus 로고    scopus 로고
    • Spatial ecology of the three-toed woodpecker in managed forest landscapes
    • Pakkala T.. 2002. Spatial ecology of the three-toed woodpecker in managed forest landscapes. Silva Fenn. 36: 279-288.
    • (2002) Silva Fenn. , vol.36 , pp. 279-288
    • Pakkala, T.1
  • 28
    • 0033831709 scopus 로고    scopus 로고
    • Evaluating the predictive performance of habitat models developed using logistic regression
    • Pearce J. and Ferrier S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133: 225-245.
    • (2000) Ecol. Model. , vol.133 , pp. 225-245
    • Pearce, J.1    Ferrier, S.2
  • 29
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips S. J.. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19: 181-197.
    • (2009) Ecol. Appl. , vol.19 , pp. 181-197
    • Phillips, S.J.1
  • 30
    • 33646543813 scopus 로고    scopus 로고
    • Are niche-based species distribution models transferable in space?
    • Randin C. F.. 2006. Are niche-based species distribution models transferable in space? J. Biogeogr. 33: 1689-1703.
    • (2006) J. Biogeogr. , vol.33 , pp. 1689-1703
    • Randin, C.F.1
  • 31
    • 33646733841 scopus 로고    scopus 로고
    • Obtaining environmental favourability functions from logistic regression
    • Real R.. 2006. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13: 237-245.
    • (2006) Environ. Ecol. Stat. , vol.13 , pp. 237-245
    • Real, R.1
  • 32
    • 15944423629 scopus 로고    scopus 로고
    • Factors affecting species distribution predictions: a simulation modeling experiment
    • Reese G. C.. 2005. Factors affecting species distribution predictions: a simulation modeling experiment. Ecol. Appl. 15: 554-564.
    • (2005) Ecol. Appl. , vol.15 , pp. 554-564
    • Reese, G.C.1
  • 33
    • 78650057774 scopus 로고    scopus 로고
    • Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data
    • Santika T. 2011. Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecol. Biogeogr. 20: 181-192.
    • (2011) Global Ecol. Biogeogr. , vol.20 , pp. 181-192
    • Santika, T.1
  • 34
    • 68949105820 scopus 로고    scopus 로고
    • The effect of species response form on species distribution model prediction and inference
    • Santika T. and Hutchinson M. F. 2009. The effect of species response form on species distribution model prediction and inference. Ecol. Model. 220: 2365-2379.
    • (2009) Ecol. Model. , vol.220 , pp. 2365-2379
    • Santika, T.1    Hutchinson, M.F.2
  • 35
    • 17644368963 scopus 로고    scopus 로고
    • Species-specific traits associated to prediction errors in bird habitat suitability modelling
    • Seoane J.. 2005. Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol. Model. 185: 299-308.
    • (2005) Ecol. Model. , vol.185 , pp. 299-308
    • Seoane, J.1
  • 36
    • 47249124855 scopus 로고    scopus 로고
    • The quest for a null model for macroecological patterns: geometry of species distributions at multiple spatial scales
    • Storch D.. 2008. The quest for a null model for macroecological patterns: geometry of species distributions at multiple spatial scales. Ecol. Lett. 11: 771-784.
    • (2008) Ecol. Lett. , vol.11 , pp. 771-784
    • Storch, D.1
  • 37
    • 79955485829 scopus 로고    scopus 로고
    • Species traits affect the performance of species distribution models for plants in southern California
    • Syphard A. D. and Franklin J. 2010. Species traits affect the performance of species distribution models for plants in southern California. J. Veg. Sci. 21: 177-189.
    • (2010) J. Veg. Sci. , vol.21 , pp. 177-189
    • Syphard, A.D.1    Franklin, J.2
  • 39
    • 66949112586 scopus 로고    scopus 로고
    • Presence-only data and the EM algorithm
    • Ward G.. 2009. Presence-only data and the EM algorithm. Biometrics 65: 554-563.
    • (2009) Biometrics , vol.65 , pp. 554-563
    • Ward, G.1
  • 40
    • 4644362931 scopus 로고    scopus 로고
    • Sensitivity of conservation planning to different approaches to using predicted species distribution data
    • Wilson K. A.. 2005. Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol. Conserv. 122: 99-112.
    • (2005) Biol. Conserv. , vol.122 , pp. 99-112
    • Wilson, K.A.1
  • 41
    • 70349694123 scopus 로고    scopus 로고
    • Static species distribution models in dynamically changing systems: how good can predictions really be?
    • Zurell D.. 2009. Static species distribution models in dynamically changing systems: how good can predictions really be? Ecography 32: 733-744.
    • (2009) Ecography , vol.32 , pp. 733-744
    • Zurell, D.1
  • 42
    • 77952498139 scopus 로고    scopus 로고
    • The virtual ecologist approach: simulating data and observers
    • Zurell D.. 2010. The virtual ecologist approach: simulating data and observers. Oikos 119: 622-635.
    • (2010) Oikos , vol.119 , pp. 622-635
    • Zurell, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.