메뉴 건너뛰기




Volumn 102 LNBIP, Issue , 2012, Pages 35-50

Imbalanced classification problems: Systematic study, issues and best practices

Author keywords

Class imbalance; Classifiers; Comprehensive study; Metrics

Indexed keywords

ALGORITHMS; BENCHMARKING; CLASSIFIERS;

EID: 84861676229     PISSN: 18651348     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-29958-2_3     Document Type: Conference Paper
Times cited : (37)

References (22)
  • 3
    • 20844458491 scopus 로고    scopus 로고
    • Mining with Rarity: A Unifying Framework
    • Weiss, G.: Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6(1), 7-19 (2004)
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 4
    • 37949004300 scopus 로고    scopus 로고
    • Data Mining from Imbalanced Data Sets
    • ch. 40, Springer US
    • Chawla, N.V.: Data Mining from Imbalanced Data Sets. In: Data Mining and Knowledge Discovery Handbook, ch. 40, pp. 853-867. Springer US (2006)
    • (2006) Data Mining and Knowledge Discovery Handbook , pp. 853-867
    • Chawla, N.V.1
  • 5
    • 0000519688 scopus 로고
    • Comparative Evaluation of Pattern Recognition Techniques for Detection of Microcalcifications in Mammography
    • Woods, K., Doss, C., Bowyer, K., Solka, J., Priebe, C., Kegelmeyer, P.: Comparative Evaluation of Pattern Recognition Techniques for Detection of Microcalcifications in Mammography. Int. Journal of Pattern Rec. and AI 7(6), 1417-1436 (1993)
    • (1993) Int. Journal of Pattern Rec. and AI , vol.7 , Issue.6 , pp. 1417-1436
    • Woods, K.1    Doss, C.2    Bowyer, K.3    Solka, J.4    Priebe, C.5    Kegelmeyer, P.6
  • 6
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy
    • Garcia, S., Herrera, F.: Evolutionary Undersampling for Classification with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary Computation 17(3), 275-306 (2009)
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • Garcia, S.1    Herrera, F.2
  • 9
    • 27144479454 scopus 로고    scopus 로고
    • Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach
    • Guo, H., Viktor, H.L.: Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach. Sigkdd Explorations 6, 30-39 (2004)
    • (2004) Sigkdd Explorations , vol.6 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 16
    • 84911351162 scopus 로고    scopus 로고
    • Building Accurate Classifiers from Imbalanced Data Sets
    • Hall, L.O., Joshi, A.: Building Accurate Classifiers from Imbalanced Data Sets. In: IMACS 2005, Paris (2005)
    • IMACS 2005, Paris (2005)
    • Hall, L.O.1    Joshi, A.2
  • 17
    • 1442275185 scopus 로고    scopus 로고
    • Learning when Training Data are Costly: The Effect of Class Distribution on Tree Induction
    • Weiss, G., Provost, F.: Learning when Training Data are Costly: The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research 19, 315-354 (2003)
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 18
    • 85083464467 scopus 로고    scopus 로고
    • Toward scalable learning with non-uniform class and cost distributions: A case study in credit card fraud detection
    • AAAI Press, Menlo Park
    • Chan, P., Stolfo, S.: Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pp. 164-168. AAAI Press, Menlo Park (1998)
    • (1998) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining , pp. 164-168
    • Chan, P.1    Stolfo, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.