-
1
-
-
84861604093
-
-
Computational Homology Project (CHomP)
-
Computational Homology Project (CHomP), http://chomp.rutgers.edu.
-
-
-
-
2
-
-
34249108879
-
Optimization and the miranda approach in detecting horseshoe-type chaos by computer
-
B. Bánhelyi, T. Csendes, and B. M. Garay, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 735-747.
-
(2007)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.17
, pp. 735-747
-
-
Bánhelyi, B.1
Csendes, T.2
Garay, B.M.3
-
3
-
-
55849114347
-
A computer-assisted proof of s3-chaos in the forced damped pendulum equation
-
B. Bánhelyi, T. Csendes, B. M. Garay, and L. Hatvani, A computer-assisted proof of S3-chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 843-867.
-
(2008)
SIAM J. Appl. Dyn. Syst.
, vol.7
, pp. 843-867
-
-
Bánhelyi, B.1
Csendes, T.2
Garay, B.M.3
Hatvani, L.4
-
4
-
-
27744477144
-
The parameterization method for invariant manifolds. Iii. Overview and applications
-
X. Cabré, E. Fontich, and R. de la Llave, The parameterization method for invariant manifolds. III. Overview and applications, J. Differential Equations, 218 (2005), pp. 444-515.
-
(2005)
J. Differential Equations
, vol.218
, pp. 444-515
-
-
Cabré, X.1
Fontich, E.2
De La Llave, R.3
-
5
-
-
68649105436
-
Algorithms for rigorous entropy bounds and symbolic dynamics
-
S. Day, R. Frongillo, and R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 1477-1506.
-
(2008)
SIAM J. Appl. Dyn. Syst.
, vol.7
, pp. 1477-1506
-
-
Day, S.1
Frongillo, R.2
Trevino, R.3
-
6
-
-
3042678480
-
A rigorous numerical method for the global analysis of infinitedimensional discrete dynamical systems
-
S. Day, O. Junge, and K. Mischaikow, A rigorous numerical method for the global analysis of infinitedimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3 (2004), pp. 117-160.
-
(2004)
SIAM J. Appl. Dyn. Syst.
, vol.3
, pp. 117-160
-
-
Day, S.1
Junge, O.2
Mischaikow, K.3
-
7
-
-
33846872592
-
Towards automated chaos verification
-
Hackensack, NJ
-
S. Day, O. Junge, and K. Mischaikow, Towards automated chaos verification, in EQUADIFF 2003, World Scientific, Hackensack, NJ, 2005, pp. 157-162.
-
EQUADIFF 2003, World Scientific
, vol.2005
, pp. 157-162
-
-
Day, S.1
Junge, O.2
Mischaikow, K.3
-
8
-
-
0005484783
-
The algorithms behind gaio-set oriented numerical methods for dynamical systems
-
Springer, Berlin
-
M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001, pp. 145-174, 805-807.
-
(2001)
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems
, vol.145-174
, pp. 805-807
-
-
Dellnitz, M.1
Froyland, G.2
Junge, O.3
-
9
-
-
23044518441
-
Shift equivalence and the conley index
-
J. Franks and D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc., 352 (2000), pp. 3305-3322.
-
(2000)
Trans. Amer. Math. Soc.
, vol.352
, pp. 3305-3322
-
-
Franks, J.1
Richeson, D.2
-
11
-
-
0033241455
-
A proof of the exponentially small transversality of the separatrices for the standard map
-
V. G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., 201 (1999), pp. 155-216.
-
(1999)
Comm. Math. Phys.
, vol.201
, pp. 155-216
-
-
Gelfreich, V.G.1
-
13
-
-
36749116209
-
A method for determining a stochastic transition
-
J. M. Greene, A method for determining a stochastic transition, J. Math. Phys., 20 (1979), pp. 1183-1201.
-
(1979)
J. Math. Phys.
, vol.20
, pp. 1183-1201
-
-
Greene, J.M.1
-
14
-
-
84861629567
-
Computing specific isolating neighborhoods
-
(Berlin World Scientific, River Edge, NJ, 2003
-
O. Junge, Computing specific isolating neighborhoods, in Progress in Analysis, Vol. I, II (Berlin, 2001), World Scientific, River Edge, NJ, 2003, pp. 571-576.
-
(2001)
Progress in Analysis
, vol.1
, Issue.2
, pp. 571-576
-
-
Junge, O.1
-
15
-
-
84971916727
-
A method for proving that monotone twist maps have no invariant circles
-
I. Jungreis, A method for proving that monotone twist maps have no invariant circles, Ergodic Theory Dynam. Systems, 11 (1991), pp. 79-84.
-
(1991)
Ergodic Theory Dynam. Systems
, vol.11
, pp. 79-84
-
-
Jungreis, I.1
-
16
-
-
3042595944
-
Computational homology
-
Springer-Verlag, New York
-
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology, Appl. Math. Sci. 157, Springer-Verlag, New York, 2004.
-
(2004)
Appl. Math. Sci.
, vol.157
-
-
Kaczynski, T.1
Mischaikow, K.2
Mrozek, M.3
-
17
-
-
21344454623
-
Topological entropy of standard type monotone twist maps
-
O. Knill, Topological entropy of standard type monotone twist maps, Trans. Amer. Math. Soc., 348 (1996), pp. 2999-3013.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, pp. 2999-3013
-
-
Knill, O.1
-
18
-
-
79251554983
-
Adaptive set-oriented computation of topological horseshoe factors in area-and volume preserving maps
-
J. D. Mireles James, Adaptive set-oriented computation of topological horseshoe factors in area-and volume preserving maps, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 1164-1200.
-
(2010)
SIAM J. Appl. Dyn. Syst.
, vol.9
, pp. 1164-1200
-
-
Mireles James, J.D.1
-
19
-
-
67649370946
-
Conley index
-
North-Holland, Amsterdam
-
K. Mischaikow and M. Mrozek, Conley index, in Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 393-460.
-
(2002)
Handbook of Dynamical Systems
, vol.2
, pp. 393-460
-
-
Mischaikow, K.1
Mrozek, M.2
-
20
-
-
59849115500
-
On the estimation of topological entropy on surfaces, in geometric and probabilistic structures in dynamics
-
AMS, Providence, RI
-
S. Newhouse, M. Berz, J. Grote, and K. Makino, On the estimation of topological entropy on surfaces, in Geometric and Probabilistic Structures in Dynamics, Contemp. Math. 469, AMS, Providence, RI, 2008, pp. 243-270.
-
(2008)
Contemp. Math.
, vol.469
, pp. 243-270
-
-
Newhouse, S.1
Berz, M.2
Grote, J.3
Makino, K.4
-
21
-
-
0001000133
-
Dynamical systems, shape theory and the conley index
-
J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems, 8 (1988), pp. 375-393.
-
(1988)
Ergodic Theory Dynam. Systems
, vol.8
, pp. 375-393
-
-
Robbin, J.W.1
Salamon, D.2
-
22
-
-
0002342184
-
Intlab -interval laboratory
-
T. Csendes, ed. Kluwer Academic Publishers Dordrecht, The Netherlands
-
S. M. Rump, INTLAB -INTerval LABoratory, in Developments in Reliable Computing, T. Csendes, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 77-104.
-
(1999)
Developments in Reliable Computing
, pp. 77-104
-
-
Rump, S.M.1
-
23
-
-
0000003018
-
Classification of one dimensional attractors
-
Berkeley, Calif. AMS, Providence, RI
-
R. F. Williams, Classification of one dimensional attractors, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), AMS, Providence, RI, 1970, pp. 341-361.
-
(1968)
Global Analysis (Proc. Sympos. Pure Math.
, vol.14
, Issue.1970
, pp. 341-361
-
-
Williams, R.F.1
-
24
-
-
68049129821
-
Topological entropy in a parameter range of the standard map
-
Y. Yamaguchi and K. Tanikawa, Topological entropy in a parameter range of the standard map, Progr. Theoret. Phys., 121 (2009), pp. 657-669.
-
(2009)
Progr. Theoret. Phys.
, vol.121
, pp. 657-669
-
-
Yamaguchi, Y.1
Tanikawa, K.2
-
25
-
-
3543092733
-
Covering relations for multidimensional dynamical systems
-
P. Zgliczýnski and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), pp. 32-58.
-
(2004)
J. Differential Equations
, vol.202
, pp. 32-58
-
-
Zgliczýnski, P.1
Gidea, M.2
|