-
1
-
-
0034276022
-
Interval analysis: Theory and applications
-
G. ALEFELD AND G. MAYER, Interval analysis: Theory and applications, J. Comput. Appl. Math., 121 (2000), pp. 421-464.
-
(2000)
J. Comput. Appl. Math
, vol.121
, pp. 421-464
-
-
ALEFELD, G.1
MAYER, G.2
-
2
-
-
0001098419
-
On the capture orbits for the three-body problem for negative energy constant
-
in Russian
-
V. M. ALEKSEEV, On the capture orbits for the three-body problem for negative energy constant, Uspekhi Mat. Nauk, 24 (1969), pp. 185-186 (in Russian).
-
(1969)
Uspekhi Mat. Nauk
, vol.24
, pp. 185-186
-
-
ALEKSEEV, V.M.1
-
3
-
-
0003568098
-
-
Springer-Verlag, Berlin
-
K. T. ALLIGOOD, T. D. SAUER, AND J. A. YORKE, Chaos. An Introduction to Dynamical Systems, Springer-Verlag, Berlin, 1997.
-
(1997)
Chaos. An Introduction to Dynamical Systems
-
-
ALLIGOOD, K.T.1
SAUER, T.D.2
YORKE, J.A.3
-
4
-
-
34249108879
-
Optimization and the Miranda approach in detecting horseshoe-type chaos by computer
-
B. BÁNHELYI, T. CSENDES, AND B. M. GARAY, Optimization and the Miranda approach in detecting horseshoe-type chaos by computer, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 735-747.
-
(2007)
Internat. J. Bifur. Chaos Appl. Sci. Engrg
, vol.17
, pp. 735-747
-
-
BÁNHELYI, B.1
CSENDES, T.2
GARAY, B.M.3
-
5
-
-
55849144453
-
2-chaos for iterates of the classical Hénon mapping
-
in preparation
-
2-chaos for iterates of the classical Hénon mapping, in preparation, 2008.
-
(2008)
-
-
BÁNHELYI, B.1
CSENDES, T.2
GARAY, B.M.3
-
6
-
-
0008807640
-
A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
-
E. BOSETTO AND E. SERRA, A variational approach to chaotic dynamics in periodically forced nonlinear oscillators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), pp. 673-709.
-
(2000)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.17
, pp. 673-709
-
-
BOSETTO, E.1
SERRA, E.2
-
7
-
-
0037141637
-
Superlinear indefinite equations on the real line and chaotic dynamics
-
A. CAPIETTO, W. DAMEROSIO, AND D. PAPINI, Superlinear indefinite equations on the real line and chaotic dynamics, J. Differential Equations, 181 (2002), pp. 419-438.
-
(2002)
J. Differential Equations
, vol.181
, pp. 419-438
-
-
CAPIETTO, A.1
DAMEROSIO, W.2
PAPINI, D.3
-
9
-
-
23044457657
-
Homoclinic shadowing
-
B. A. COOMES, H. KOCAK, AND K. J. PALMER, Homoclinic shadowing, J. Dynam. Differential Equations, 17 (2005), pp. 175-215.
-
(2005)
J. Dynam. Differential Equations
, vol.17
, pp. 175-215
-
-
COOMES, B.A.1
KOCAK, H.2
PALMER, K.J.3
-
10
-
-
33646882850
-
A verified optimization technique to locate chaotic regions of a Hénon system
-
T. CSENDES, B. M. GARAY, AND B. BÁ NHELYI, A verified optimization technique to locate chaotic regions of a Hénon system, J. Global Optim., 35 (2006), pp. 145-160.
-
(2006)
J. Global Optim
, vol.35
, pp. 145-160
-
-
CSENDES, T.1
GARAY, B.M.2
BÁ NHELYI, B.3
-
11
-
-
55849122709
-
Algorithms for rigorous entropy bounds and symbolic dynamics
-
submitted
-
S. DAY, R. FRONGILLO, AND R. TREVINO, Algorithms for rigorous entropy bounds and symbolic dynamics, submitted.
-
-
-
DAY, S.1
FRONGILLO, R.2
TREVINO, R.3
-
12
-
-
0005484783
-
The algorithms behind GAIO-set oriented numerical methods for dynamical systems
-
Systems, B. Fiedler, ed, Springer-Verlag, Berlin
-
M. DELLNITZ, G. FROYLAND, AND O. JUNGE, The algorithms behind GAIO-set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler, ed., Springer-Verlag, Berlin, 2001, pp. 145-174.
-
(2001)
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical
, pp. 145-174
-
-
DELLNITZ, M.1
FROYLAND, G.2
JUNGE, O.3
-
13
-
-
67649382019
-
Set oriented numerical methods for dynamical systems
-
B. Fiedler, ed, North-Holland, Amsterdam
-
M. DELLNITZ AND O. JUNGE, Set oriented numerical methods for dynamical systems, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 221-264.
-
(2002)
Handbook of Dynamical Systems
, vol.2
, pp. 221-264
-
-
DELLNITZ, M.1
JUNGE, O.2
-
14
-
-
0009022763
-
Stable and unstable manifolds of the Hénon mapping
-
V. FRANCESCHINI AND L. RUSSO, Stable and unstable manifolds of the Hénon mapping, J. Statist. Phys., 25 (1981), pp. 757-769.
-
(1981)
J. Statist. Phys
, vol.25
, pp. 757-769
-
-
FRANCESCHINI, V.1
RUSSO, L.2
-
15
-
-
33745432313
-
Existence tests for solutions of nonlinear equations using Borsuk's theorem
-
A. FROMMER AND B. LANG, Existence tests for solutions of nonlinear equations using Borsuk's theorem, SIAM J. Numer. Anal., 43 (2005), pp. 1348-1361.
-
(2005)
SIAM J. Numer. Anal
, vol.43
, pp. 1348-1361
-
-
FROMMER, A.1
LANG, B.2
-
16
-
-
3042828486
-
A comparison of the Moore and Miranda existence tests
-
A. FROMMER, B. LANG, AND M. SCHNURR, A comparison of the Moore and Miranda existence tests, Computing, 72 (2004), pp. 349-354.
-
(2004)
Computing
, vol.72
, pp. 349-354
-
-
FROMMER, A.1
LANG, B.2
SCHNURR, M.3
-
17
-
-
3042590477
-
-
M. FURI, M. MARTELLI, M. O'NEIL, AND C. STAPLES, Chaotic orbits of a pendulum with variable length, Electron. J. Differential Equations, (2004), no. 36.
-
M. FURI, M. MARTELLI, M. O'NEIL, AND C. STAPLES, Chaotic orbits of a pendulum with variable length, Electron. J. Differential Equations, (2004), no. 36.
-
-
-
-
18
-
-
0031063208
-
Positive topological entropy of Chua's circuit: A computer-assisted proof
-
Z. GALIAS, Positive topological entropy of Chua's circuit: A computer-assisted proof, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), pp. 331-349.
-
(1997)
Internat. J. Bifur. Chaos Appl. Sci. Engrg
, vol.7
, pp. 331-349
-
-
GALIAS, Z.1
-
20
-
-
0035622331
-
Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon, map
-
Z. GALIAS AND P. ZGLICZYNSKI, Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon, map, Nonlinearity, 14 (2001), pp. 909-932.
-
(2001)
Nonlinearity
, vol.14
, pp. 909-932
-
-
GALIAS, Z.1
ZGLICZYNSKI, P.2
-
21
-
-
3543092733
-
Covering relations for multidimensional dynamical systems
-
M. GIDEA AND P. ZGLICZYNSKI, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202 (2004), pp. 32-58.
-
(2004)
J. Differential Equations
, vol.202
, pp. 32-58
-
-
GIDEA, M.1
ZGLICZYNSKI, P.2
-
22
-
-
0002220884
-
A computer proof that the Lorenz equations have "chaotic" solutions
-
B. HASSARD, B. ZHANG, S. P. HASTINGS, AND W. C. TROY, A computer proof that the Lorenz equations have "chaotic" solutions, Appl. Math. Lett., 7 (1994), pp. 79-83.
-
(1994)
Appl. Math. Lett
, vol.7
, pp. 79-83
-
-
HASSARD, B.1
ZHANG, B.2
HASTINGS, S.P.3
TROY, W.C.4
-
23
-
-
21144461130
-
Chaotic motion of a pendulum with oscillatory forcing
-
S. P. HASTINGS AND J. B. MCLEOD, Chaotic motion of a pendulum with oscillatory forcing, Amer. Math. Monthly, 100 (1993), pp. 563-572.
-
(1993)
Amer. Math. Monthly
, vol.100
, pp. 563-572
-
-
HASTINGS, S.P.1
MCLEOD, J.B.2
-
24
-
-
0033240392
-
The forced damped pendulum: Chaos, complication and control
-
J. H. HUBBARD, The forced damped pendulum: Chaos, complication and control, Amer. Math. Monthly, 106 (1999), pp. 741-758.
-
(1999)
Amer. Math. Monthly
, vol.106
, pp. 741-758
-
-
HUBBARD, J.H.1
-
25
-
-
0035532147
-
A chaos lemma
-
J. A. KENNEDY, S. KOCAK, AND J. A. YORKE, A chaos lemma, Amer. Math. Monthly, 108 (2001), pp. 411-423.
-
(2001)
Amer. Math. Monthly
, vol.108
, pp. 411-423
-
-
KENNEDY, J.A.1
KOCAK, S.2
YORKE, J.A.3
-
27
-
-
0001292188
-
PROFIL/BIAS - a fast interval library
-
O. KNÜPPEL, PROFIL/BIAS - a fast interval library, Computing, 53 (1994), pp. 277-287.
-
(1994)
Computing
, vol.53
, pp. 277-287
-
-
KNÜPPEL, O.1
-
29
-
-
26044462216
-
The Lorenz attractor is mixing
-
S. LUZZATTO, I. MELBOURNE, AND F. PACCAUT, The Lorenz attractor is mixing, Comm. Math. Phys., 260 (2005), pp. 393-401.
-
(2005)
Comm. Math. Phys
, vol.260
, pp. 393-401
-
-
LUZZATTO, S.1
MELBOURNE, I.2
PACCAUT, F.3
-
30
-
-
0002403778
-
Chaos in the Lorenz equations: A computer-assisted proof
-
K. MISCHAIKOW AND M. MROZEK, Chaos in the Lorenz equations: A computer-assisted proof, Bull. Amer. Math. Soc., 32 (1995), pp. 66-72.
-
(1995)
Bull. Amer. Math. Soc
, vol.32
, pp. 66-72
-
-
MISCHAIKOW, K.1
MROZEK, M.2
-
31
-
-
0040251440
-
Existence of a homoclinic point for the Hénon mapping
-
M. MISIUREWICZ AND B. SZEWC, Existence of a homoclinic point for the Hénon mapping, Comm. Math. Phys., 75 (1980), pp. 285-291.
-
(1980)
Comm. Math. Phys
, vol.75
, pp. 285-291
-
-
MISIUREWICZ, M.1
SZEWC, B.2
-
33
-
-
0002265766
-
Validated solutions of initial value problems for ordinary differential equations
-
N. S. NEDIALKOV, K. R. JACKSON, AND G. F. CORLISS, Validated solutions of initial value problems for ordinary differential equations, Appl. Math. Comput., 105 (1999), pp. 21-68.
-
(1999)
Appl. Math. Comput
, vol.105
, pp. 21-68
-
-
NEDIALKOV, N.S.1
JACKSON, K.R.2
CORLISS, G.F.3
-
34
-
-
22944453026
-
Fixed points, periodic points, and coin-tossing sequences for mappings defined on two-dimensional cells
-
D. PAPINI AND F. ZANOLIN, Fixed points, periodic points, and coin-tossing sequences for mappings defined on two-dimensional cells, Fixed Point Theory Appl., 2 (2004), pp. 113-134.
-
(2004)
Fixed Point Theory Appl
, vol.2
, pp. 113-134
-
-
PAPINI, D.1
ZANOLIN, F.2
-
36
-
-
0004185634
-
-
Springer-Verlag, Berlin
-
L. C. PICCININI, G. STAMPACCIA, AND G. VIDOSSICH, Ordinary Differential Equations in E, Springer-Verlag, Berlin, 1984.
-
(1984)
Ordinary Differential Equations in E
-
-
PICCININI, L.C.1
STAMPACCIA, G.2
VIDOSSICH, G.3
-
37
-
-
22944464425
-
Fixed points for dissipative-repulsive systems and topological dynamics of mappings defined on N-dimensional cells
-
M. PIREDDU AND F. ZANOLIN, Fixed points for dissipative-repulsive systems and topological dynamics of mappings defined on N-dimensional cells, Adv. Nonlinear Stud., 5 (2005), pp. 411-440.
-
(2005)
Adv. Nonlinear Stud
, vol.5
, pp. 411-440
-
-
PIREDDU, M.1
ZANOLIN, F.2
-
38
-
-
37349100223
-
Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator
-
A. POKROVSKII, O. RASSKAZOV, AND D. VISETTI, Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), pp. 943-970.
-
(2007)
Discrete Contin. Dyn. Syst. Ser. B
, vol.8
, pp. 943-970
-
-
POKROVSKII, A.1
RASSKAZOV, O.2
VISETTI, D.3
-
40
-
-
0004043484
-
-
2nd ed, CRC Press, Boca Raton, FL
-
C. ROBINSON, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, 2nd ed., CRC Press, Boca Raton, FL, 1999.
-
(1999)
Dynamical Systems. Stability, Symbolic Dynamics, and Chaos
-
-
ROBINSON, C.1
-
41
-
-
67649321652
-
Geometric singular perturbation analysis of neuronal dynamics
-
B. Fiedler, ed, North-Holland, Amsterdam
-
J. RUBIN AND D. TERMAN, Geometric singular perturbation analysis of neuronal dynamics, in Handbook of Dynamical Systems, Vol. 2, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 93-146.
-
(2002)
Handbook of Dynamical Systems
, vol.2
, pp. 93-146
-
-
RUBIN, J.1
TERMAN, D.2
-
42
-
-
17444391690
-
On the proofs of some statements concerning the theorems of Kantorovich, Moore and Miranda
-
M. SCHNURR, On the proofs of some statements concerning the theorems of Kantorovich, Moore and Miranda, Reliab. Comput., 11 (2005), pp. 77-85.
-
(2005)
Reliab. Comput
, vol.11
, pp. 77-85
-
-
SCHNURR, M.1
-
44
-
-
0033229126
-
Rigorous verification of chaotic behaviour of maps using validated shadowing
-
D. STOFFER AND K. J. PALMER, Rigorous verification of chaotic behaviour of maps using validated shadowing, Nonlinearity, 12 (1999), pp. 1683-1689.
-
(1999)
Nonlinearity
, vol.12
, pp. 1683-1689
-
-
STOFFER, D.1
PALMER, K.J.2
-
45
-
-
0142135045
-
Solutions of prescribed number of zeroes to a class of superlinear ODE's systems
-
S. TERRACINI AND G. VERZINI, Solutions of prescribed number of zeroes to a class of superlinear ODE's systems, NoDEA Nonlinear Differential Equations Appl., 8 (2001), pp. 323-341.
-
(2001)
NoDEA Nonlinear Differential Equations Appl
, vol.8
, pp. 323-341
-
-
TERRACINI, S.1
VERZINI, G.2
-
46
-
-
0002061016
-
A rigorous ODE solver and Smale's 14th problem
-
W. TUCKER, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), pp. 53-117.
-
(2002)
Found. Comput. Math
, vol.2
, pp. 53-117
-
-
TUCKER, W.1
-
47
-
-
22344456923
-
A computer-assisted proof of chaos in Josephson junctions
-
X. S. YANG AND Q. LI, A computer-assisted proof of chaos in Josephson junctions, Chaos Solitons Fractals, 27 (2006), pp. 25-30.
-
(2006)
Chaos Solitons Fractals
, vol.27
, pp. 25-30
-
-
YANG, X.S.1
LI, Q.2
-
48
-
-
0010567216
-
On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations
-
S. WIGGINS, On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations, SIAM J. Appl. Math., 48 (1988), pp. 262-285.
-
(1988)
SIAM J. Appl. Math
, vol.48
, pp. 262-285
-
-
WIGGINS, S.1
-
50
-
-
36749082131
-
A horseshoe in a cellular neural network of four-dimensional autonomous ordinary differential equations
-
X. S. YANG AND Q. LI, A horseshoe in a cellular neural network of four-dimensional autonomous ordinary differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 3211-3218.
-
(2007)
Internat. J. Bifur. Chaos Appl. Sci. Engrg
, vol.17
, pp. 3211-3218
-
-
YANG, X.S.1
LI, Q.2
-
52
-
-
0000527735
-
Fixed point index for iterations of maps, topological horseshoe and chaos
-
P. ZGLICZYNSKI, Fixed point index for iterations of maps, topological horseshoe and chaos, Topol. Methods Nonlinear Anal., 8 (1996), pp. 169-177.
-
(1996)
Topol. Methods Nonlinear Anal
, vol.8
, pp. 169-177
-
-
ZGLICZYNSKI, P.1
-
53
-
-
0041540896
-
Computer assisted proof of chaos in the Rössler equations and in the Hénon map
-
P. ZGLICZYNSKI, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10 (1997), pp. 243-252.
-
(1997)
Nonlinearity
, vol.10
, pp. 243-252
-
-
ZGLICZYNSKI, P.1
-
54
-
-
0040843322
-
Multidimensional perturbations of one-dimensional maps and stability of Sharkovski ordering
-
P. ZGLICZYNSKI, Multidimensional perturbations of one-dimensional maps and stability of Sharkovski ordering, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), pp. 1867-1876.
-
(1999)
Internat. J. Bifur. Chaos Appl. Sci. Engrg
, vol.9
, pp. 1867-1876
-
-
ZGLICZYNSKI, P.1
|