-
1
-
-
67849097127
-
An approximation to the solution of telegraph equation by variational iteration method
-
J. Biazar, H. Ebrahimi, and Z. Ayati An approximation to the solution of telegraph equation by variational iteration method Numer. Methods Partial Differential Equations 25 2009 797 801
-
(2009)
Numer. Methods Partial Differential Equations
, vol.25
, pp. 797-801
-
-
Biazar, J.1
Ebrahimi, H.2
Ayati, Z.3
-
2
-
-
0012807790
-
Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation
-
S. Cowan, R.H. Enns, S.S. Rangnekar, and S.S. Sanghera Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation Can. J. Phys. 64 1986 311 315
-
(1986)
Can. J. Phys.
, vol.64
, pp. 311-315
-
-
Cowan, S.1
Enns, R.H.2
Rangnekar, S.S.3
Sanghera, S.S.4
-
3
-
-
0035734429
-
Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids
-
B. Cockburn, G. Kanschat, I. Perugia, and D. Schotzau Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids SIAM J. Numer. Anal. 39 2001 264 285
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, pp. 264-285
-
-
Cockburn, B.1
Kanschat, G.2
Perugia, I.3
Schotzau, D.4
-
4
-
-
59349113701
-
Finite element method for the space and time fractional Fokker-Planck equation
-
W. Deng Finite element method for the space and time fractional Fokker-Planck equation SIAM J. Numer. Anal. 47 2008 204 226
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 204-226
-
-
Deng, W.1
-
5
-
-
77952888765
-
A compact difference scheme for the fractional diffusion-wave equation
-
R. Du, W.R. Cao, and Z.Z. Sun A compact difference scheme for the fractional diffusion-wave equation Appl. Math. Model. 34 2010 2998 3007
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 2998-3007
-
-
Du, R.1
Cao, W.R.2
Sun, Z.Z.3
-
7
-
-
34547548712
-
Finite difference/spectral approximations for the time-fractional diffusion equation
-
Y. Lin, and C. Xu Finite difference/spectral approximations for the time-fractional diffusion equation J. Comput. Phys. 225 2007 1533 1552
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
8
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
C. Li, Z. Zhao, and Y. Chen Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion Comput. Math. Appl. 62 2011 855 875
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 855-875
-
-
Li, C.1
Zhao, Z.2
Chen, Y.3
-
9
-
-
77952597982
-
Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by Hes homotopy perturbation method
-
S. Momani, and A. Yildirim Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by Hes homotopy perturbation method Int. J. Comput. Math. 87 2010 1057 1065
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 1057-1065
-
-
Momani, S.1
Yildirim, A.2
-
10
-
-
46049119633
-
Implicit finite difference approximation for time fractional diffusion equations
-
D. Murio Implicit finite difference approximation for time fractional diffusion equations Comput. Math. Appl. 56 2008 1138 1145
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 1138-1145
-
-
Murio, D.1
-
11
-
-
4544250038
-
Time fractional Schröinger equation
-
M. Naber Time fractional Schröinger equation J. Math. Phys. 45 2004 3339 3352
-
(2004)
J. Math. Phys.
, vol.45
, pp. 3339-3352
-
-
Naber, M.1
-
12
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
I. Podlubny Geometric and physical interpretation of fractional integration and fractional differentiation Fract. Calc. Appl. Anal. 5 2002 367 386
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
13
-
-
38049021511
-
On the solution of the fractional nonlinear Schröinger equation
-
S.Z. Rida, H.M. El-Sherbiny, and A.A.M. Arafa On the solution of the fractional nonlinear Schröinger equation Phys. Lett. A 372 2008 553 558
-
(2008)
Phys. Lett. A
, vol.372
, pp. 553-558
-
-
Rida, S.Z.1
El-Sherbiny, H.M.2
Arafa, A.A.M.3
-
14
-
-
67249166170
-
An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method
-
A. Yildirim An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method Int. J. Nonlinear Sci. Numer. Simul. 10 2009 445 450
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, pp. 445-450
-
-
Yildirim, A.1
-
15
-
-
78249267580
-
Hes homotopy perturbation method for solving the space and time fractional telegraph equations
-
A. Yildirim Hes homotopy perturbation method for solving the space and time fractional telegraph equations Int. J. Comput. Math. 87 2010 2998 3006
-
(2010)
Int. J. Comput. Math.
, vol.87
, pp. 2998-3006
-
-
Yildirim, A.1
-
16
-
-
71549148064
-
Homotopy perturbation method for solving the space-time fractional advection-dispersion equation
-
A. Yildirim, and H. Kocak Homotopy perturbation method for solving the space-time fractional advection-dispersion equation Adv. Water Resour. 32 2009 1711 1716
-
(2009)
Adv. Water Resour.
, vol.32
, pp. 1711-1716
-
-
Yildirim, A.1
Kocak, H.2
|