메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 85-95

Analysis of homotopy perturbation method for solution of hyperbolic equations with an integral condition

Author keywords

Homotopy perturbation method; Non local boundary condition; Partial hfferential equations

Indexed keywords


EID: 84860231737     PISSN: 19963343     EISSN: None     Source Type: Journal    
DOI: 10.3923/ajaps.2012.85.95     Document Type: Article
Times cited : (2)

References (10)
  • 1
    • 84968496723 scopus 로고
    • Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations
    • Batten, J.W., 1963. Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations. Math. Comput., 17: 405-413.
    • (1963) Math. Comput. , vol.17 , pp. 405-413
    • Batten, J.W.1
  • 2
    • 0348057899 scopus 로고    scopus 로고
    • Existence of solutions for one-dimensional wave equations with non-local conditions
    • Belin, S.A., 2001. Existence of solutions for one-dimensional wave equations with non-local conditions. Electron. J. Differ. Eq., 76: 1-8.
    • (2001) Electron. J. Differ. Eq. , vol.76 , pp. 1-8
    • Belin, S.A.1
  • 3
    • 33744973469 scopus 로고    scopus 로고
    • Weak solution for hyperbolic equations with a non-local condition
    • Bougoffa, L., 2005. Weak solution for hyperbolic equations with a non-local condition. Aust. J. Math. Anal. Appl., 2: 1-7.
    • (2005) Aust. J. Math. Anal. Appl. , vol.2 , pp. 1-7
    • Bougoffa, L.1
  • 4
    • 0042568862 scopus 로고
    • Stepwise stability for the heat equation with a non-local constraint
    • Cahlon, B., D.M. Kulkarni and P. Shi, 1995. Stepwise stability for the heat equation with a non-local constraint. SIAM J. Numer. Anal., 32: 571-593.
    • (1995) SIAM J. Numer. Anal. , vol.32 , pp. 571-593
    • Cahlon, B.1    Kulkarni, D.M.2    Shi, P.3
  • 5
    • 0032672778 scopus 로고    scopus 로고
    • Homotopy perturbation technique, computational methods
    • He, J.H., 1999. Homotopy perturbation technique, computational methods. Applied Mech. Eng., 178: 257-262.
    • (1999) Applied Mech. Eng. , vol.178 , pp. 257-262
    • He, J.H.1
  • 6
    • 0033702384 scopus 로고    scopus 로고
    • A coupling method of homotopy technique and perturbation technique for nonlinear problems
    • He, J.H., 2000. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Non-Linear Mech., 351: 37-43.
    • (2000) Int. J. Non-Linear Mech. , vol.351 , pp. 37-43
    • He, J.H.1
  • 7
    • 0037440579 scopus 로고    scopus 로고
    • Homotopy perturbation method: A new nonlinear analytical technique
    • He, J.H., 2003. Homotopy perturbation method: A new nonlinear analytical technique. Applied Math. Comput., 135: 73-79.
    • (2003) Applied Math. Comput. , vol.135 , pp. 73-79
    • He, J.H.1
  • 8
    • 3042516283 scopus 로고    scopus 로고
    • A non-local problem with integral conditions for hyperbolic equations
    • Pulkina, L.S., 1999. A non-local problem with integral conditions for hyperbolic equations. Electron. J. Differ. Eq., 45: 1-6.
    • (1999) Electron. J. Differ. Eq. , vol.45 , pp. 1-6
    • Pulkina, L.S.1
  • 9
    • 21144477093 scopus 로고
    • Weak solution to evolution problem with a nonlocal constraint
    • Shi, P., 1993. Weak solution to evolution problem with a nonlocal constraint. SIAM J. Math. Anal., 24: 46-58.
    • (1993) SIAM J. Math. Anal. , vol.24 , pp. 46-58
    • Shi, P.1
  • 10
    • 0009178324 scopus 로고
    • Mixed problem with an integral condition for certain parabolic equations Differ
    • Yurchuk, N.I., 1986. Mixed problem with an integral condition for certain parabolic equations Differ. Equ., 22: 1457-1463.
    • (1986) Equ. , vol.22 , pp. 1457-1463
    • Yurchuk, N.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.