메뉴 건너뛰기




Volumn 92, Issue , 2012, Pages 133-144

Clustering in applications with multiple data sources-A mutual subspace clustering approach

Author keywords

Clustering; Multiple sources

Indexed keywords

BOTTOM UP METHODS; CLUSTERING; CUSTOMER RELATIONSHIP MANAGEMENT; DATA MINING TASKS; DATA SETS; DATA SOURCE; DENSE REGION; DENSITY-BASED; DENSITY-BASED MODEL; FORM CLUSTERS; HIGH-DIMENSIONAL; K-MEANS CLUSTERING; LOW-DIMENSIONAL SUBSPACE; MULTIPLE DATA; MULTIPLE SOURCE; NUMBER OF CLUSTERS; REAL DATA SETS; SUBSPACE CLUSTERING; SUBSPACE CLUSTERS; SYNTHETIC DATASETS; TOP-DOWN METHODS;

EID: 84861481435     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.08.032     Document Type: Article
Times cited : (9)

References (29)
  • 1
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering, in: Proceedings of 1999 ACM-SIGMOD International Conference on Management of Data (SIGMOD'99), Philadelphia, PA, June
    • C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in: Proceedings of 1999 ACM-SIGMOD International Conference on Management of Data (SIGMOD'99), Philadelphia, PA, June 1999, pp. 61-72.
    • (1999) , pp. 61-72
    • Aggarwal, C.C.1    Wolf, J.L.2    Yu, P.S.3    Procopiuc, C.4    Park, J.S.5
  • 2
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • in: Proceedings of 2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, TX, May
    • C.C. Aggarwal, P.S. Yu, Finding generalized projected clusters in high dimensional spaces, in: Proceedings of 2000 ACM-SIGMOD International Conference on Management of Data (SIGMOD'00), Dallas, TX, May 2000, pp. 70-81.
    • (2000) , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • in: Proceedings of 1998 ACM-SIGMOD International Conference on Management of Data (SIGMOD'98), Seattle, WA, June
    • R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of 1998 ACM-SIGMOD International Conference on Management of Data (SIGMOD'98), Seattle, WA, June 1998, pp. 94-105.
    • (1998) , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 0036039291 scopus 로고    scopus 로고
    • A new cell-based clustering method for large, high-dimensional data in data mining applications
    • ACM Press, New York, NY, USA
    • Chang J.-W., Jin D.-S. A new cell-based clustering method for large, high-dimensional data in data mining applications. SAC'02: Proceedings of the 2002 ACM symposium on Applied computing 2002, 503-507. ACM Press, New York, NY, USA.
    • (2002) SAC'02: Proceedings of the 2002 ACM symposium on Applied computing , pp. 503-507
    • Chang, J.-W.1    Jin, D.-S.2
  • 6
    • 84861483872 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data, in: Proceedings of 1999 International Conference on Knowledge Discovery and Data Mining (KDD'99), San Diego, CA, Asugust
    • C.H. Cheng, A.W.-C. Fu, Y. Zhang, Entropy-based subspace clustering for mining numerical data, in: Proceedings of 1999 International Conference on Knowledge Discovery and Data Mining (KDD'99), San Diego, CA, August 1999, pp. 84-93.
    • (1999) , pp. 84-93
    • Cheng, C.H.1    Fu, A.W.-C.2    Zhang, Y.3
  • 7
    • 6344279447 scopus 로고    scopus 로고
    • Multi-relational data mining: an introduction
    • Děroski S. Multi-relational data mining: an introduction. SIGKDD Explor. Newsl. 2003, 5(1):1-16.
    • (2003) SIGKDD Explor. Newsl. , vol.5 , Issue.1 , pp. 1-16
    • Děroski, S.1
  • 8
    • 33745484604 scopus 로고    scopus 로고
    • Joint cluster analysis of attribute data and relationship data: the connected k-center problem
    • in: SDM
    • M. Ester, R. Ge, B.J. Gao, Z. Hu, B. Ben-Moshe, Joint cluster analysis of attribute data and relationship data: the connected k-center problem, in: SDM, 2006.
    • (2006)
    • Ester, M.1    Ge, R.2    Gao, B.J.3    Hu, Z.4    Ben-Moshe, B.5
  • 9
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases
    • in: Proceedings of 1996 International Conference on Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, August
    • M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases, in: Proceedings of 1996 International Conference on Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, August 1996, pp. 226-231.
    • (1996) , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 10
    • 85172422910 scopus 로고    scopus 로고
    • Density-connected sets and their application for trend detection in spatial databases
    • in: Proceedings of 1997 International Conference on Knowledge Discovery and Data Mining (KDD'97), Newport Beach, CA, August
    • M. Ester, H.-P. Kriegel, J. Sander, X. Xu, Density-connected sets and their application for trend detection in spatial databases, in: Proceedings of 1997 International Conference on Knowledge Discovery and Data Mining (KDD'97), Newport Beach, CA, August 1997, pp. 10-15.
    • (1997) , pp. 10-15
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 11
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • Friedman J.H., Meulman J.J. Clustering objects on subsets of attributes. J. R. Stat. Soc. Ser. B 2004, 66(4):815.
    • (2004) J. R. Stat. Soc. Ser. B , vol.66 , Issue.4 , pp. 815
    • Friedman, J.H.1    Meulman, J.J.2
  • 12
    • 19944388875 scopus 로고    scopus 로고
    • Dual clustering: integrating data clustering over optimization and constraint domains
    • Lin C.-R., Liu K.-H., Chen M.-S. Dual clustering: integrating data clustering over optimization and constraint domains. IEEE Trans. Knowledge Data Eng. 2005, 17(5):628-637.
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.5 , pp. 628-637
    • Lin, C.-R.1    Liu, K.-H.2    Chen, M.-S.3
  • 14
    • 52649115862 scopus 로고    scopus 로고
    • A general model for multiple view unsupervised learning
    • in: SDM
    • B. Long, P.S. Yu, Z. Zhang, A general model for multiple view unsupervised learning, in: SDM, 2008, pp. 822-833.
    • (2008) , pp. 822-833
    • Long, B.1    Yu, P.S.2    Zhang, Z.3
  • 16
    • 84861479634 scopus 로고    scopus 로고
    • Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report 9906-010, Northwestern University, June
    • H. Nagesh, S. Goil, A. Choudhary, Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report 9906-010, Northwestern University, June 1999.
    • (1999)
    • Nagesh, H.1    Goil, S.2    Choudhary, A.3
  • 18
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons L., Haque E., Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 2004, 6(1):90-105.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 19
    • 32344444324 scopus 로고    scopus 로고
    • On mining cross-graph quasi-cliques, in: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'05), Chicago, IL, USA, August
    • J. Pei, D. Jiang, A. Zhang, On mining cross-graph quasi-cliques, in: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'05), Chicago, IL, USA, August 2005.
    • (2005)
    • Pei, J.1    Jiang, D.2    Zhang, A.3
  • 20
    • 5444223340 scopus 로고    scopus 로고
    • Maple: a fast algorithm for maximal pattern-based clustering
    • in: Proceedings of the Third IEEE International Conference on Data Mining (ICDM'03), IEEE, Melbourne, FL, November
    • J. Pei, X. Zhang, M. Cho, H. Wang, P.S. Yu, Maple: a fast algorithm for maximal pattern-based clustering, in: Proceedings of the Third IEEE International Conference on Data Mining (ICDM'03), IEEE, Melbourne, FL, November 2003.
    • (2003)
    • Pei, J.1    Zhang, X.2    Cho, M.3    Wang, H.4    Yu, P.S.5
  • 22
    • 0039074502 scopus 로고
    • Search through systematic set enumeration, in: Proceedings of 1992 International Conference on Principle of Knowledge Representation and Reasoning (KR'92), Cambridge, MA
    • R. Rymon, Search through systematic set enumeration, in: Proceedings of 1992 International Conference on Principle of Knowledge Representation and Reasoning (KR'92), Cambridge, MA, 1992, pp. 539-550.
    • (1992) , pp. 539-550
    • Rymon, R.1
  • 23
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • Suppl 1
    • Segal E., Wang H., Koller D. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 2003, 19(Suppl 1).
    • (2003) Bioinformatics , vol.19
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 24
    • 0036372484 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • in: Proceedings of 2002 ACM-SIGMOD International Conference on Management of Data (SIGMOD'02), Madison, WI, June
    • H. Wang, W. Wang, J. Yang, P.S. Yu, Clustering by pattern similarity in large data sets, in: Proceedings of 2002 ACM-SIGMOD International Conference on Management of Data (SIGMOD'02), Madison, WI, June 2002.
    • (2002)
    • Wang, H.1    Wang, W.2    Yang, J.3    Yu, P.S.4
  • 25
    • 0742324835 scopus 로고    scopus 로고
    • Findit: a fast and intelligent subspace clustering algorithm using dimension voting
    • Woo K.-G., Lee J.-H., Kim M.-H., Lee Y.-J. Findit: a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Software Technol. 2004, 46(4):255-271.
    • (2004) Inf. Software Technol. , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.-G.1    Lee, J.-H.2    Kim, M.-H.3    Lee, Y.-J.4
  • 27
    • 78650186597 scopus 로고    scopus 로고
    • m-sne: Multiview stochastic neighbor embedding, in: ICONIP (1)'10
    • B. Xie, Y. Mu, D. Tao, m-sne: Multiview stochastic neighbor embedding, in: ICONIP (1)'10, 2010, pp. 338-346.
    • (2010) , pp. 338-346
    • Xie, B.1    Mu, Y.2    Tao, D.3
  • 28
    • 0036211103 scopus 로고    scopus 로고
    • δ-cluster: capturing subspace correlation in a large data set
    • in: Proceedings of 2002 International Conference on Data Engineering (ICDE'02), San Fransisco, CA, April
    • J. Yang, W. Wang, H. Wang, P.S. Yu, δ-cluster: capturing subspace correlation in a large data set, in: Proceedings of 2002 International Conference on Data Engineering (ICDE'02), San Fransisco, CA, April 2002.
    • (2002)
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.S.4
  • 29
    • 84861480625 scopus 로고    scopus 로고
    • Fast gradient clustering, in: NIPS 2009 Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (NIPS: DISCML)
    • T. Zhou, D. Tao, Fast gradient clustering, in: NIPS 2009 Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (NIPS: DISCML), 2009, pp. 1-6.
    • (2009) , pp. 1-6
    • Zhou, T.1    Tao, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.