-
1
-
-
21344474078
-
Multiscale convergence and reiterated homogenization
-
G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), pp. 297-342.
-
(1996)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.126
, pp. 297-342
-
-
Allaire, G.1
Briane, M.2
-
2
-
-
0002604317
-
Two-scale convergence on periodic surfaces and applications
-
A. Bourgeat and C. Carasso, eds., World Scientific, Singapore, 1996
-
G. Allaire, A. Damlamian, and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, 1995, A. Bourgeat and C. Carasso, eds., World Scientific, Singapore, 1996.
-
(1995)
Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media
-
-
Allaire, G.1
Damlamian, A.2
Hornung, U.3
-
3
-
-
0027610594
-
Homogenization of the Neuman problem with nonisolated holes
-
G. Allaire and F. Murat, Homogenization of the homogeneous Neumann problem with nonisolated holes, Asymptot. Anal., 7 (1993), pp. 81-95. (Pubitemid 23707907)
-
(1993)
Asymptotic Analysis
, vol.7
, Issue.2
, pp. 81-95
-
-
Allaire, G.1
Murat, F.2
-
5
-
-
0035541158
-
Homogenization of thin structures by two-scale method with respect to measures
-
G. Bouchitté and I. Fragalà, Homogenization of thin structures by two-scale method with respect to measures, SIAM J. Math. Anal., 32 (2001), pp. 1198-1226.
-
(2001)
SIAM J. Math. Anal.
, vol.32
, pp. 1198-1226
-
-
Bouchitté, G.1
Fragalà, I.2
-
6
-
-
4344689055
-
H-convergence in perforated domains
-
Collège de France Seminar, Vol. XIII, D. Cioranescu and J.-L. Lions, eds., Pitman Res. Notes in Math., Longman, New York
-
M. Briane, A. Damlamian, and P. Donato, H-convergence in perforated domains, in Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XIII, D. Cioranescu and J.-L. Lions, eds., Pitman Res. Notes in Math., Longman, New York, 1998, pp. 62-100.
-
(1998)
Nonlinear Partial Differential Equations and Their Applications
, pp. 62-100
-
-
Briane, M.1
Damlamian, A.2
Donato, P.3
-
8
-
-
77950266001
-
G-convergence approach to variational problems in perforated domains with Fourier boundary conditions
-
V. Chiadò Piat and A. Piatnitski, G-convergence approach to variational problems in perforated domains with Fourier boundary conditions, ESAIM Control Optim. Calc. Var., 16 (2010), pp. 148-175.
-
(2010)
ESAIM Control Optim. Calc. Var.
, vol.16
, pp. 148-175
-
-
Chiadò Piat, V.1
Piatnitski, A.2
-
9
-
-
0038391423
-
Éclatement périodique et homogénéisation
-
DOI 10.1016/S1631-073X(02)02429-9, PII S1631073X02024299
-
D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Sér. 1, 335 (2002), pp. 99-104. (Pubitemid 36645758)
-
(2002)
Comptes Rendus Mathematique
, vol.335
, Issue.1
, pp. 99-104
-
-
Cioranescu, D.1
Damlamian, A.2
Griso, G.3
-
10
-
-
77953809209
-
The Stokes problem in perforated domains by the periodic unfolding method
-
M. Suliciu, ed., Theta, Bucharest
-
D. Cioranescu, A. Damlamian, and G. Griso, The Stokes problem in perforated domains by the periodic unfolding method, in Proceedings of the Conference on New Trends in Continuum Mechanics, M. Suliciu, ed., Theta, Bucharest, 2005, pp. 67-80.
-
(2005)
Proceedings of the Conference on New Trends in Continuum Mechanics
, pp. 67-80
-
-
Cioranescu, D.1
Damlamian, A.2
Griso, G.3
-
11
-
-
67749122242
-
The periodic unfolding method in homogenization
-
D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), pp. 1585-1620.
-
(2008)
SIAM J. Math. Anal.
, vol.40
, pp. 1585-1620
-
-
Cioranescu, D.1
Damlamian, A.2
Griso, G.3
-
12
-
-
40049088779
-
The periodic unfolding method for perforated domains and Neumann sieve models
-
D. Cioranescu, A. Damlamian, G. Griso, and D. Onofrei, The periodic unfolding method for perforated domains and Neumann sieve models, J. Math. Pures Appl., 89 (2008), pp. 248-277.
-
(2008)
J. Math. Pures Appl.
, vol.89
, pp. 248-277
-
-
Cioranescu, D.1
Damlamian, A.2
Griso, G.3
Onofrei, D.4
-
13
-
-
84974755184
-
Homogénéisation du problème de Neumann non homogène dans des ouverts perforés
-
D. Cioranescu and P. Donato, Homogénéisation du problème de Neumann non homogène dans des ouverts perforés, Asymptot. Anal., 1 (1988), pp. 115-138.
-
(1988)
Asymptot. Anal.
, vol.1
, pp. 115-138
-
-
Cioranescu, D.1
Donato, P.2
-
14
-
-
34548418316
-
The periodic unfolding method in perforated domains
-
D. Cioranescu, P. Donato, and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.), 63 (2006), pp. 467-496.
-
(2006)
Port. Math. (N.S.)
, vol.63
, pp. 467-496
-
-
Cioranescu, D.1
Donato, P.2
Zaki, R.3
-
15
-
-
34548460292
-
Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions
-
D. Cioranescu, P. Donato, and R. Zaki, Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions, Asymptot. Anal., 53 (2007), pp. 209-235. (Pubitemid 47352236)
-
(2007)
Asymptotic Analysis
, vol.53
, Issue.4
, pp. 209-235
-
-
Cioranescu, D.1
Donato, P.2
Zaki, R.3
-
17
-
-
0003321216
-
Homogenization of reticulated structures
-
Springer, New York
-
D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Appl. Math. Sci. 136, Springer, New York, 1999.
-
(1999)
Appl. Math. Sci.
, vol.136
-
-
Cioranescu, D.1
Saint Jean Paulin, J.2
-
18
-
-
84861372688
-
From linear to nonlinear by the homogenizations of cracks
-
(Proceedings of the Conference in Honor of Mitsuharu Ôtani, Tokyo, GAKUTO Internat. Ser. Math. Sci. Appl. 32, Gakkotosho, Tokyo, 2010
-
A. Damlamian, From linear to nonlinear by the homogenizations of cracks, in Current Advances in Nonlinear Analysis and Related Topics (Proceedings of the Conference in Honor of Mitsuharu Ôtani, Tokyo, 2009), GAKUTO Internat. Ser. Math. Sci. Appl. 32, Gakkotosho, Tokyo, 2010, pp. 25-40.
-
(2009)
Current Advances in Nonlinear Analysis and Related Topics
, pp. 25-40
-
-
Damlamian, A.1
-
19
-
-
4344693508
-
Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?
-
DOI 10.1051/cocv:2002046
-
A. Damlamian and P. Donato, Which sequences of holes are admissible for periodic homogenization with Neumann boundary condition?, ESAIM Control Optim. Calc. Var., 8 (2002), pp. 555-585. (Pubitemid 47611744)
-
(2002)
ESAIM - Control, Optimisation and Calculus of Variations
, vol.8
, pp. 555-585
-
-
Damlamian, A.1
Donato, P.2
-
20
-
-
0347719964
-
Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains
-
P. Donato, A. Gaudiello, and L. Sgambati, Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains, Asymptot. Anal., 16 (1998), pp. 223-243. (Pubitemid 128439923)
-
(1998)
Asymptotic Analysis
, vol.16
, Issue.3-4
, pp. 223-243
-
-
Donato, P.1
Gaudiello, A.2
Sgambati, L.3
-
21
-
-
0008971086
-
On a model of fractured porous media
-
(Proc. Conference St. Etienne), A. Bourgeat, C. Carasso, S. Luckhaus, and A. Mikelic, eds., World Scientific
-
A. Ene and J. Saint Jean Paulin, On a model of fractured porous media, in Mathematical Modelling of Flow through Porous Media (Proc. Conference St. Etienne), A. Bourgeat, C. Carasso, S. Luckhaus, and A. Mikelic, eds., World Scientific, 1995, pp. 402-409.
-
(1995)
Mathematical Modelling of Flow through Porous Media
, pp. 402-409
-
-
Ene, A.1
Saint Jean Paulin, J.2
-
22
-
-
35748948387
-
Homogenization of thin piezoelectric perforated shells
-
M. Ghergu, G. Griso, H. Mechkour, and B. Miara, Homogenization of thin piezoelectric perforated shells, M2AN Math. Model. Numer. Anal., 41 (2007), pp. 875-895.
-
(2007)
M2AN Math. Model. Numer. Anal.
, vol.41
, pp. 875-895
-
-
Ghergu, M.1
Griso, G.2
Mechkour, H.3
Miara, B.4
-
23
-
-
20444434917
-
Error estimate and unfolding for periodic homogenization
-
G. Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40 (2004), pp. 269-286.
-
(2004)
Asymptot. Anal.
, vol.40
, pp. 269-286
-
-
Griso, G.1
-
24
-
-
77950232807
-
Homogenization of an elasticity problem for a catalyst support by using the unfolding method
-
G. Griso and M. T. Sanchez, Homogenization of an elasticity problem for a catalyst support by using the unfolding method, Asymptot. Anal., 67 (2010), pp. 45-84.
-
(2010)
Asymptot. Anal.
, vol.67
, pp. 45-84
-
-
Griso, G.1
Sanchez, M.T.2
-
25
-
-
9744285957
-
Homogenization of the Laplace equation in a partially perforated domain
-
World Scientific, Hackensack, NJ
-
W. Jäger and A. Mikeliěc, Homogenization of the Laplace equation in a partially perforated domain, in Homogenization, Ser. Adv. Math. Appl. Sci. 50, World Scientific, Hackensack, NJ, 1999, pp. 259-284.
-
(1999)
Homogenization, Ser. Adv. Math. Appl. Sci.
, vol.50
, pp. 259-284
-
-
Jäger, W.1
Mikeliěc, A.2
-
26
-
-
84980088555
-
Rotation and strain
-
F. John, Rotation and strain, Comm. Pure Appl. Math., 14 (1961), pp. 391-413.
-
(1961)
Comm. Pure Appl. Math.
, vol.14
, pp. 391-413
-
-
John, F.1
-
27
-
-
0001339947
-
Some extensions of two-scale convergence
-
M. Neuss-Radu, Some extensions of two-scale convergence, C.R. Acad. Sci. Paris Sér. 1, 322 (1996), pp. 899-904.
-
(1996)
C.R. Acad. Sci. Paris Sér.
, vol.1
, Issue.322
, pp. 899-904
-
-
Neuss-Radu, M.1
-
28
-
-
0003733530
-
-
North-Holland, Amsterdam
-
O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992.
-
(1992)
Mathematical Problems in Elasticity and Homogenization
-
-
Oleinik, O.A.1
Shamaev, A.S.2
Yosifian, G.A.3
-
29
-
-
40049095969
-
The unfolding operator near a hyperplane and its applications to the Neumann sieve model
-
D. Onofrei, The unfolding operator near a hyperplane and its applications to the Neumann sieve model, Adv. Math. Sci. Appl., 16 (2006), pp. 239-258.
-
(2006)
Adv. Math. Sci. Appl.
, vol.16
, pp. 239-258
-
-
Onofrei, D.1
-
31
-
-
0030305554
-
Connectedness and homogenization. Examples of fractal conductivity
-
V. Zhikov, Connectedness and homogenization. Examples of fractal conductivity, Sb. Math., 187 (1996), pp. 1109-1147.
-
(1996)
Sb. Math.
, vol.187
, pp. 1109-1147
-
-
Zhikov, V.1
|