메뉴 건너뛰기




Volumn 41, Issue 5, 2007, Pages 875-895

Homogenization of thin piezoelectric perforated shells

Author keywords

Computational solid mechanics; Homogenization; Perforations; Piezoelectricity; Shells

Indexed keywords


EID: 35748948387     PISSN: 0764583X     EISSN: 12903841     Source Type: Journal    
DOI: 10.1051/m2an:2007046     Document Type: Article
Times cited : (17)

References (23)
  • 1
    • 21144473666 scopus 로고
    • Homogenization and two-scale convergence
    • G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518.
    • (1992) SIAM J. Math. Anal , vol.23 , pp. 1482-1518
    • Allaire, G.1
  • 2
    • 0001085153 scopus 로고
    • Derivation of the double porosity model of single phase flow in homogenization theory
    • T. Arbogast. J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow in homogenization theory. SIAM J. Math. Anal. 21 (1990) 823-836.
    • (1990) SIAM J. Math. Anal , vol.21 , pp. 823-836
    • Arbogast, T.1    Douglas, J.2    Hornung, U.3
  • 5
    • 0009714110 scopus 로고
    • A new kind of singular stiff problems and application to thin elastic shells
    • D. Caillerie and E. Sanchez-Palencia, A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci. 5 (1995) 47-66.
    • (1995) Math. Models Methods Appl. Sci , vol.5 , pp. 47-66
    • Caillerie, D.1    Sanchez-Palencia, E.2
  • 6
    • 0000091338 scopus 로고
    • Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases
    • D. Caillerie and E. Sanchez-Palencia, Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci. 5 (1995) 473-496.
    • (1995) Math. Models Methods Appl. Sci , vol.5 , pp. 473-496
    • Caillerie, D.1    Sanchez-Palencia, E.2
  • 9
    • 34548418316 scopus 로고    scopus 로고
    • The periodic unfolding method in perforated domains
    • Fasc. 4
    • D. Cioranescu and P. Donato, The periodic unfolding method in perforated domains,Portugaliae Mathematica, Vol. 63, Fasc. 4 (2006) 467-496.
    • (2006) Portugaliae Mathematica , vol.63 , pp. 467-496
    • Cioranescu, D.1    Donato, P.2
  • 11
    • 34548418316 scopus 로고    scopus 로고
    • The periodic unfolding method in perforated domains
    • D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Forth. Math. N.S. 63 (2006) 467-496.
    • (2006) Forth. Math. N.S , vol.63 , pp. 467-496
    • Cioranescu, D.1    Donato, P.2    Zaki, R.3
  • 15
    • 0000782640 scopus 로고
    • On the foundations of the linear theory of thin elastic shell
    • W.T. Koiter, On the foundations of the linear theory of thin elastic shell. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169-195.
    • (1970) Proc. Kon. Ned. Akad. Wetensch , vol.B73 , pp. 169-195
    • Koiter, W.T.1
  • 17
    • 0030507284 scopus 로고    scopus 로고
    • Convergence of the homogenization process for a double porosity model of immiscible two phase flow
    • S. Luckhaus, A. Bourgeat and A. Mikelic, Convergence of the homogenization process for a double porosity model of immiscible two phase flow. SIAM J. Math. Anal. 27 (1996) 1520-1543.
    • (1996) SIAM J. Math. Anal , vol.27 , pp. 1520-1543
    • Luckhaus, S.1    Bourgeat, A.2    Mikelic, A.3
  • 19
    • 24944551543 scopus 로고    scopus 로고
    • Piezomaterials for bone regeneration design. Homogenization approach
    • B. Miara, E. Rohan, M. Zidi and B. Labat, Piezomaterials for bone regeneration design. Homogenization approach. J. Mech. Phys. Solids 53 (2005) 2529-2556.
    • (2005) J. Mech. Phys. Solids , vol.53 , pp. 2529-2556
    • Miara, B.1    Rohan, E.2    Zidi, M.3    Labat, B.4
  • 20
    • 0000315621 scopus 로고
    • A general convergence result for a functional related to the theory of homogenisation
    • G. Nguetseng, A general convergence result for a functional related to the theory of homogenisation. SIAM J. Math. Anal. 20 (1989) 608-623.
    • (1989) SIAM J. Math. Anal , vol.20 , pp. 608-623
    • Nguetseng, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.