메뉴 건너뛰기




Volumn 59, Issue 6, 2012, Pages 1539-1549

Embedding topic discovery in conditional random fields model for segmenting nuclei using multispectral data

Author keywords

Conditional random fields (CRFs); probabilistic latent semantic analysis (pLSA); segmentation; spectral microscopy; topic discovery

Indexed keywords

CELL SEGMENTATION; COLOR IMAGES; CONDITIONAL RANDOM FIELD; CONDITIONAL RANDOM FIELDS (CRFS); CONTEXTUAL INFORMATION; DATA SETS; HIGH-DIMENSIONAL DATASET; IMAGING MICROSCOPY; INTENSITY INHOMOGENEITY; LOW-LEVEL CUES; MULTI-CLASSIFICATION; MULTI-SPECTRAL DATA; PROBABILISTIC LATENT SEMANTIC ANALYSIS; ROBUST MODELS; SEGMENTATION ALGORITHMS; SEGMENTATION ERROR; SINGLE LAYER; SPECTRAL IMAGES; TOPDOWN; TOPIC DISCOVERY;

EID: 84861370255     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2012.2188892     Document Type: Review
Times cited : (14)

References (52)
  • 2
    • 77950301412 scopus 로고    scopus 로고
    • On the concept of objectivity in digital image analysis in pathology
    • P. J. Tadrous, "On the concept of objectivity in digital image analysis in pathology," Pathology, vol. 42, pp. 207-211, 2010.
    • (2010) Pathology , vol.42 , pp. 207-211
    • Tadrous, P.J.1
  • 5
    • 33745951677 scopus 로고    scopus 로고
    • Spectral imaging perspective on cytomics
    • DOI 10.1002/cyto.a.20292
    • R. M. Levenson, "Spectral imaging perspective on cytomics," Cytometry A, vol. 69A, pp. 592-600, 2006. (Pubitemid 44060593)
    • (2006) Cytometry Part A , vol.69 , Issue.7 , pp. 592-600
    • Levenson, R.M.1
  • 6
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • M. Sezgin and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," J. Electron. Imag., vol. 13, no. 1, pp. 146-168, 2004.
    • (2004) J. Electron. Imag , vol.13 , Issue.1 , pp. 146-168
    • Sezgin, M.1    Sankur, B.2
  • 7
    • 48649085952 scopus 로고    scopus 로고
    • Adaptive thresholding based cell segmentation for cell-destruction activity verification
    • P. Sankaran and V. Asari, "Adaptive thresholding based cell segmentation for cell-destruction activity verification," in Proc. IEEE Applied Imagery Pattern Recognit., 2006, pp. 14-14.
    • (2006) Proc IEEE Applied Imagery Pattern Recognit , pp. 14-14
    • Sankaran, P.1    Asari, V.2
  • 8
    • 0034893266 scopus 로고    scopus 로고
    • Cell image segmentation with kernel-based dynamic clustering and an ellipsoidal cell shape model
    • DOI 10.1006/jbin.2001.1009
    • F.Yang and T. Jiang, "Cell image segmentationwith kernel-based dynamic clustering and an ellipsoidal cell shape model," J. Biomed. Informat., vol. 34, pp. 67-73, 2001. (Pubitemid 32721795)
    • (2001) Journal of Biomedical Informatics , vol.34 , Issue.2 , pp. 67-73
    • Yang, F.1    Jiang, T.2
  • 10
    • 77955723352 scopus 로고    scopus 로고
    • Automatic fuzzy-neural based segmentation of microscopic cell images
    • S. Colantonio, I. B. Gurevich, and O. Salvetti, "Automatic fuzzy-neural based segmentation of microscopic cell images," J. Signal Imag. Syst. Eng., vol. 1, no. 1, pp. 18-24, 2008.
    • (2008) J. Signal Imag. Syst. Eng , vol.1 , Issue.1 , pp. 18-24
    • Colantonio, S.1    Gurevich, I.B.2    Salvetti, O.3
  • 12
    • 0030572291 scopus 로고    scopus 로고
    • Region growing segmentation of textured cell images
    • H.-S.Wu, J. Barba, and J. Gil, "Region growing segmentation of textured cell images," Electron. Lett., vol. 32, no. 12, pp. 1084-1085, 1996. (Pubitemid 126511234)
    • (1996) Electronics Letters , vol.32 , Issue.12 , pp. 1084-1085
    • Wu, H.-S.1    Barba, J.2    Gil, J.3
  • 13
    • 0031252183 scopus 로고    scopus 로고
    • An improved seeded region growing algorithm
    • A. Mehnert and P. Jackwaya, "An improved seeded region growing algorithm," Pattern Recognit. Lett., vol. 18, no. 10, pp. 1065-1071, 1997.
    • (1997) Pattern Recognit. Lett , vol.18 , Issue.10 , pp. 1065-1071
    • Mehnert, A.1    Jackwaya, P.2
  • 14
    • 0032031330 scopus 로고    scopus 로고
    • A parametric fitting algorithm for segmentation of cell images
    • DOI 10.1109/10.661165
    • H.-S. Wu, J. Barba, and J. Gil, "A parametric fitting algorithm for segmentation of cell images," IEEE Trans. Biomed. Eng., vol. 45, no. 3, pp. 400-407, Mar. 1998. (Pubitemid 28128665)
    • (1998) IEEE Transactions on Biomedical Engineering , vol.45 , Issue.3 , pp. 400-407
    • Wu, H.-S.1    Barba, J.2    Gil, J.3
  • 16
    • 77957949598 scopus 로고    scopus 로고
    • An automatic cell segmentation method for differential interference contrast microscopy
    • A. Kuijper and B. Heise, "An automatic cell segmentation method for differential interference contrast microscopy," in Proc. IEEE 19th Int. Conf. Pattern Recognit., 2008, pp. 1-4.
    • (2008) Proc IEEE 19th Int. Conf. Pattern Recognit , pp. 1-4
    • Kuijper, A.1    Heise, B.2
  • 17
    • 77955198345 scopus 로고    scopus 로고
    • Nonparametric segmentation and classification of small size irregularly shaped stem cell nuclei using adjustable windowing
    • N. Lowry, R. Mangoubi, M. Desai, and P. Sammak, "Nonparametric segmentation and classification of small size irregularly shaped stem cell nuclei using adjustable windowing," in Proc. IEEE Int. Symp. Biomed. Imag., 2010, pp. 141-144.
    • (2010) Proc IEEE Int. Symp. Biomed. Imag , pp. 141-144
    • Lowry, N.1    Mangoubi, R.2    Desai, M.3    Sammak, P.4
  • 18
    • 0032777167 scopus 로고    scopus 로고
    • Image segmentation and analysis via multiscale gradient watershed hierarchies
    • Jan
    • J. Gauch, "Image segmentation and analysis via multiscale gradient watershed hierarchies," IEEE Trans. Image Process., vol. 8, no. 1, pp. 69-79, Jan. 1999.
    • (1999) IEEE Trans. Image Process , vol.8 , Issue.1 , pp. 69-79
    • Gauch, J.1
  • 19
    • 0035400763 scopus 로고    scopus 로고
    • An efficient method based on watershed and rule-based merging for segmentation of 3D histo-pathological images
    • P. S. Umesh Adiga and B. Chaudhuri, "An efficient method based on watershed and rule-based merging for segmentation of 3D histo-pathological images," Pattern Recognit., vol. 34, pp. 1449-1459, 2001.
    • (2001) Pattern Recognit , vol.34 , pp. 1449-1459
    • Umesh Adiga, P.S.1    Chaudhuri, B.2
  • 20
    • 0036650721 scopus 로고    scopus 로고
    • Cooperation of color pixel classification schemes and color watershed: A study for microscopic images
    • DOI 10.1109/TIP.2002.800889, PII 1011092002800889
    • O. Lezoray and H. Cardot, "Cooperation of color pixel classification schemes and color watershed: A study for microscopic images," IEEE Trans. Image Process., vol. 11, no. 7, pp. 783-789, Jul. 2002. (Pubitemid 34949982)
    • (2002) IEEE Transactions on Image Processing , vol.11 , Issue.7 , pp. 783-789
    • Lezoray, O.1    Cardot, H.2
  • 21
    • 34548299771 scopus 로고    scopus 로고
    • A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images
    • DOI 10.1002/cyto.a.20430
    • G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski, C. Bjornsson, W. Shain, and B. Roysam, "A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images," Cytometry A, vol. 71, no. 9, pp. 724-736, 2007. (Pubitemid 47347770)
    • (2007) Cytometry Part A , vol.71 , Issue.9 , pp. 724-736
    • Lin, G.1    Chawla, M.K.2    Olson, K.3    Barnes, C.A.4    Guzowski, J.F.5    Bjornsson, C.6    Shain, W.7    Roysam, B.8
  • 22
  • 23
    • 51049093381 scopus 로고    scopus 로고
    • Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images
    • O. Dzyubachyk,W. Niessen, and E.Meijering, "Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images," in Proc. IEEE Int. Symp. Biomed. Imag., 2008, pp. 185- 188.
    • (2008) Proc IEEE Int. Symp. Biomed. Imag , pp. 185-188
    • Dzyubachyk, O.1    Niessen, W.2    Meijering, E.3
  • 25
    • 0042265775 scopus 로고    scopus 로고
    • 3D aggregated object detection and labeling from multivariate confocal microscopy images: A model validation approach
    • Aug
    • C. G. J. H. Wang, A. Trubuil, and B. Kaeffer, "3D aggregated object detection and labeling from multivariate confocal microscopy images: A model validation approach," IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 4, pp. 572-581, Aug. 2003.
    • (2003) IEEE Trans. Syst., Man, Cybern. B , vol.33 , Issue.4 , pp. 572-581
    • Wang, C.G.J.H.1    Trubuil, A.2    Kaeffer, B.3
  • 26
    • 27244448858 scopus 로고    scopus 로고
    • Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants
    • Pattern Recognition: 27th DAGM Symposium: Proceedings
    • J. Fehr, O. Ronneberger, H. Kurz, and H. Burkhardt, "Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants," in Proc. DAGM Symp., 2005, vol. 3663, pp. 377-384. (Pubitemid 41520677)
    • (2005) Lecture Notes in Computer Science , vol.3663 , pp. 377-384
    • Fehr, J.1    Ronneberger, O.2    Kurz, H.3    Burkhardt, H.4
  • 27
    • 37549026179 scopus 로고    scopus 로고
    • Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy
    • M.Wang, X. Zhou, F. Li, J. Huckins, R.W. King, and S. T.Wong, "Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy," Bioinformatics, vol. 24, pp. 94-101, 2008.
    • (2008) Bioinformatics , vol.24 , pp. 94-101
    • Wang, M.1    Zhou, X.2    Li, F.3    Huckins, J.4    King, R.W.5    Wong, S.T.6
  • 28
    • 77955834045 scopus 로고    scopus 로고
    • A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images
    • Sep
    • A. Calapez and A. Rosa, "A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images," IEEE Trans. Image Process., vol. 19, no. 9, pp. 2408-2418, Sep. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.9 , pp. 2408-2418
    • Calapez, A.1    Rosa, A.2
  • 30
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proc. Int. Conf. Mach. Learn., 2001, pp. 282-289.
    • (2001) Proc. Int. Conf. Mach. Learn , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 31
    • 84896138820 scopus 로고    scopus 로고
    • random fields M.S. thesis,Dept. Electr. Eng. Comput. Sci.,Massachusetts Inst. Technol., Cambridge
    • A. Quattoni, "Object recognition with latent conditional random fields," M.S. thesis,Dept. Electr. Eng. Comput. Sci.,Massachusetts Inst. Technol., Cambridge, 2005..
    • (2005) Object Recognition with Latent Conditional
    • Quattoni, A.1
  • 32
    • 52249102022 scopus 로고    scopus 로고
    • Learning coupled conditional
    • random field for image decomposition with application on object categorization
    • X. Ma and W. Grimson, "Learning coupled conditional random field for image decomposition with application on object categorization," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1-8.
    • (2008) Proc. IEEE Conf. Comput. Vis. Pattern Recog , pp. 1-8
    • Ma, X.1    Grimson, W.2
  • 33
    • 62949202438 scopus 로고    scopus 로고
    • Non-homogeneous conditional
    • random fields for contextual image segmentation
    • O. Besbes, N. Boujemaa, and Z. Belhadj, "Non-homogeneous conditional random fields for contextual image segmentation," in Proc. Int. Symp. Multimedia, 2009, pp. 166-171.
    • (2009) Proc. Int. Symp. Multimedia , pp. 166-171
    • Besbes, O.1    Boujemaa, N.2    Belhadj, Z.3
  • 34
    • 58049184640 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and Y. Weiss, "Learning to combine bottom-up and top-down segmentation," Int. J. Comput. Vis., vol. 81, pp. 105-118, 2009.
    • (2009) Int. J. Comput. Vis , vol.81 , pp. 105-118
    • Levin, A.1    Weiss, Y.2
  • 37
    • 84898437193 scopus 로고    scopus 로고
    • Conditional random field for natural scene categorization
    • Y. Wang and S. Gong, "Conditional random field for natural scene categorization," in Proc. Brit. Mach. Vis. Conf., 2007, pp. 1-10.
    • (2007) Proc. Brit. Mach. Vis. Conf , pp. 1-10
    • Wang, Y.1    Gong, S.2
  • 38
    • 77955181441 scopus 로고    scopus 로고
    • A bottom-up and top-down model for cell segmentation using multispectral data
    • X. Wu and S. K. Shah, "A bottom-up and top-down model for cell segmentation using multispectral data," in Proc. IEEE Int. Symp. Biomed. Imag., 2010, pp. 592-595.
    • (2010) Proc IEEE Int. Symp. Biomed. Imag , pp. 592-595
    • Wu, X.1    Shah, S.K.2
  • 39
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • L. Getoor and B. Taskar, Eds, Cambridge, MA
    • C. Sutton and A. Mccallum, "An introduction to conditional random fields for relational learning," in Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, Eds, Cambridge, MA, 2006.
    • (2006) Introduction to Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 40
    • 33846221503 scopus 로고    scopus 로고
    • A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape
    • DOI 10.1007/s11263-006-8711-1
    • D. Cremers, M. Rousson, and R. Deriche, "A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape," Int. J. Comput. Vis., vol. 72, no. 2, pp. 195-215, 2007. (Pubitemid 46094760)
    • (2007) International Journal of Computer Vision , vol.72 , Issue.2 , pp. 195-215
    • Cremers, D.1    Rousson, M.2    Deriche, R.3
  • 41
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • T. Hofmann, "Unsupervised learning by probabilistic latent semantic analysis," Mach. Learn., vol. 42, no. 1-2, pp. 177-196, 2001. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 43
    • 0022557697 scopus 로고
    • A note on the gradient of a multi-image
    • S. D. Zenzo, "A note on the gradient of a multi-image," Comput. Vis., Graph., Image Process., vol. 33, pp. 116-125, 1986.
    • (1986) Comput. Vis., Graph., Image Process , vol.33 , pp. 116-125
    • Zenzo, S.D.1
  • 44
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 2, pp. 153-158, Feb. 1997. (Pubitemid 127828334)
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1
  • 45
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb
    • V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabin, R.2
  • 46
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • DOI 10.1109/TPAMI.2006.200
    • V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1568-1583, Oct. 2006. (Pubitemid 46405078)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 47
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," J. Mach. Learn. Res., vol. 6, pp. 1453-1484, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 49
    • 71149096870 scopus 로고    scopus 로고
    • Large margin training for hidden Markov models with partially observed states
    • T. Do and T. Artieres, "Large margin training for hidden Markov models with partially observed states," in Proc. Int. Conf. Mach. Learn., 2009, pp. 265-272.
    • (2009) Proc. Int. Conf. Mach. Learn , pp. 265-272
    • Do, T.1    Artieres, T.2
  • 50
    • 1842372117 scopus 로고    scopus 로고
    • Applying watershed algorithms to the segmentation of clustered nuclei
    • DOI 10.1002/(SICI)1097-0320(19970801)28:4<289::AID-CYTO3>3.0.CO;2-7
    • N. Malpica, C. O. de Solorzano, J. J. V. A. Santos, I. Vallcorba, J. M. García-Sagredo, and F. del Pozo, "Applying watershed algorithms to the segmentation of clustered nuclei," Cytometry, vol. 28, pp. 289-297, 1997. (Pubitemid 27359604)
    • (1997) Cytometry , vol.28 , Issue.4 , pp. 289-297
    • Malpica, N.1    De Solorzano, C.O.2    Vaquero, J.J.3    Santos, A.4    Vallcorba, I.5    Garcia-Sagredo, J.M.6    Del Pozo, F.7
  • 51
    • 80055033576 scopus 로고    scopus 로고
    • A unified approach to expectation-maximization and level set segmentation applied to stem cell and brain MRI images
    • N. Lowry, R. Mangoubi, M. Desai, Y. Marzouk, and P. Sammak, "A unified approach to expectation-maximization and level set segmentation applied to stem cell and brain MRI images," in Proc. IEEE Int. Symp. Biomed. Imag., 2011, pp. 1446-1450.
    • (2011) Proc IEEE Int. Symp. Biomed. Imag , pp. 1446-1450
    • Lowry, N.1    Mangoubi, R.2    Desai, M.3    Marzouk, Y.4    Sammak, P.5
  • 52
    • 33645114839 scopus 로고    scopus 로고
    • Supervised automatic histogram clustering and watershed segmentation. Application to microscopic medical color images
    • O. Lezoray, "Supervised automatic histogram clustering and watershed segmentation. Application to microscopic medical color images," Image Anal. Stereol., vol. 22, pp. 113-120, 2003.
    • (2003) Image Anal. Stereol , vol.22 , pp. 113-120
    • Lezoray, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.