메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages 567-588

Maximum likelihood estimation for social network dynamics

Author keywords

Graphs; Longitudinal data; Method of moments; Robbins Monro algorithm; Stochastic approximation

Indexed keywords


EID: 84861346830     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/09-AOAS313     Document Type: Article
Times cited : (132)

References (38)
  • 3
    • 84965635837 scopus 로고
    • Clustering and hierarchy in interpersonal relations: Testing two theoretical models on 742 sociograms
    • Davis, J. A. (1970). Clustering and hierarchy in interpersonal relations: Testing two theoretical models on 742 sociograms. American Sociological Review 35 843-852.
    • (1970) American Sociological Review , vol.35 , pp. 843-852
    • Davis, J.A.1
  • 4
    • 77957594681 scopus 로고    scopus 로고
    • La dinámica de las redes de amistad. La elección de amigos en el programa Erasmus
    • 4.3
    • de Federico de la Rúa, A. (2003). La dinámica de las redes de amistad. La elección de amigos en el programa Erasmus. REDES 4.3 1-44.
    • (2003) REDES , pp. 1-44
    • de Federico de la Rúa, A.1
  • 5
    • 67649384302 scopus 로고
    • Discussion of Dempster, Laird and Rubin (1977). Maximum likelihood estimation from incomplete data via the EM algorithm
    • Efron, B. (1977). Discussion of Dempster, Laird and Rubin (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 29.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 29
    • Efron, B.1
  • 7
    • 84995047602 scopus 로고
    • Statistical analysis of change in networks
    • Frank, O. (1991). Statistical analysis of change in networks. Statist. Neerlandica 45 283-293.
    • (1991) Statist. Neerlandica , vol.45 , pp. 283-293
    • Frank, O.1
  • 9
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statist. Sci. 13163-185.
    • (1998) Statist. Sci , pp. 13163-13185
    • Gelman, A.1    Meng, X.-L.2
  • 10
    • 13144294075 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with Markov chain Monte-Carlo Method for incomplete data estimation problems
    • Gu, M. G. and Kong, F. H. (1998). A stochastic approximation algorithm with Markov chain Monte-Carlo Method for incomplete data estimation problems. Proc. Natl. Acad. Sci. USA 95 7270-7274.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 7270-7274
    • Gu, M.G.1    Kong, F.H.2
  • 11
    • 0035532138 scopus 로고    scopus 로고
    • Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation
    • Gu, M. G. and Zhu, H.-T. (2001). Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. J. Roy. Statist. Soc. Ser. B 63 339-355.
    • (2001) J. Roy. Statist. Soc. Ser. B , vol.63 , pp. 339-355
    • Gu, M.G.1    Zhu, H.-T.2
  • 12
    • 38049177943 scopus 로고    scopus 로고
    • Discrete temporal models of social networks
    • (E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing and A. X. Zheng, eds.). Lecture Notes in Computer Science, In, Springer, Berlin
    • Hanneke, S. and Xing, E. P. (2007). Discrete temporal models of social networks. In Statistical Network Analysis: Models, Issues and New Directions (ICML 2006) (E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing and A. X. Zheng, eds.). Lecture Notes in Computer Science 4503115-125. Springer, Berlin.
    • (2007) Statistical Network Analysis: Models, Issues and New Directions (ICML 2006) , pp. 4503115-4503125
    • Hanneke, S.1    Xing, E.P.2
  • 14
    • 33749665991 scopus 로고    scopus 로고
    • Inference in curved exponential family models for networks
    • Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family models for networks. J. Graph. Comput. Statist. 15 565-583.
    • (2006) J. Graph. Comput. Statist , vol.15 , pp. 565-583
    • Hunter, D.R.1    Handcock, M.S.2
  • 15
    • 38049139336 scopus 로고    scopus 로고
    • Heider vs Simmel: Emergent features in dynamic structures
    • In, (E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing and A. X. Zheng, eds.), Lecture Notes in Computer Science, Springer, Berlin
    • Krackhardt, D. and Handcock, M. S. (2007). Heider vs Simmel: Emergent features in dynamic structures. In Statistical Network Analysis: Models, Issues and New Directions (ICML 2006). (E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing and A. X. Zheng, eds.) Lecture Notes in Computer Science 4503 14-27. Springer, Berlin.
    • (2007) Statistical Network Analysis: Models, Issues and New Directions (ICML 2006) , vol.4503 , pp. 14-27
    • Krackhardt, D.1    Handcock, M.S.2
  • 18
    • 84937285732 scopus 로고
    • Models for network dynamics: A Markovian framework
    • Leenders, R. T. A. J. (1995). Models for network dynamics: A Markovian framework. Journal of Mathematical Sociology 20 1-21.
    • (1995) Journal of Mathematical Sociology , vol.20 , pp. 1-21
    • Leenders, R.T.A.J.1
  • 19
    • 0001044972 scopus 로고
    • Finding observed information when using the EM algorithm
    • Louis, T. A. (1982). Finding observed information when using the EM algorithm. J. Roy. Statist. Soc. Ser. B 44 226-233.
    • (1982) J. Roy. Statist. Soc. Ser. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 22
    • 0001483601 scopus 로고
    • A missing information principle: Theory and applications
    • In, Univ. California Press, Berkeley
    • Orchard, T. and Woodbury, M. A. (1972). A missing information principle: Theory and applications. In Proceedings Sixth Berkeley Sympos. Math. Statist. Probab. 1 697-715. Univ. California Press, Berkeley.
    • (1972) Proceedings Sixth Berkeley Sympos. Math. Statist. Probab , vol.1 , pp. 697-715
    • Orchard, T.1    Woodbury, M.A.2
  • 23
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22 400-407.
    • (1951) Ann. Math. Statist , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 24
    • 0035648177 scopus 로고    scopus 로고
    • Random graph models for temporal processes in social networks
    • Robins, G. and Pattison, P. (2001). Random graph models for temporal processes in social networks. Journal of Mathematical Sociology 25 5-41.
    • (2001) Journal of Mathematical Sociology , vol.25 , pp. 5-41
    • Robins, G.1    Pattison, P.2
  • 25
    • 34147146466 scopus 로고    scopus 로고
    • Markov models for digraph panel data: Monte Carlo-based derivative estimation
    • Schweinberger, M. and Snijders, T. A. B. (2006). Markov models for digraph panel data: Monte Carlo-based derivative estimation. Comput. Statist. Data Anal. 51 4465-4483.
    • (2006) Comput. Statist. Data Anal , vol.51 , pp. 4465-4483
    • Schweinberger, M.1    Snijders, T.A.B.2
  • 26
    • 38349047149 scopus 로고    scopus 로고
    • Nonlinear continuous time modeling approaches in panel research
    • Singer, H. (2008). Nonlinear continuous time modeling approaches in panel research. Statist. Neerlandica 62 29-57.
    • (2008) Statist. Neerlandica , vol.62 , pp. 29-57
    • Singer, H.1
  • 27
    • 0035741510 scopus 로고    scopus 로고
    • The statistical evaluation of social network dynamics
    • In, (M. E. Sobel and M. P. Becker, eds.) Blackwell, London
    • Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. In Sociological Methodology-2001 (M. E. Sobel and M. P. Becker, eds.) 361-395. Blackwell, London.
    • (2001) Sociological Methodology-2001 , pp. 361-395
    • Snijders, T.A.B.1
  • 29
    • 0003025507 scopus 로고    scopus 로고
    • Simulation for statistical inference in dynamic network models
    • In, (R. Conte, R. Hegselmann and P. Terna, eds.) Springer, Berlin
    • Snijders, T. A. B. and van Duijn, M. A. J. (1997). Simulation for statistical inference in dynamic network models. In Simulating Social Phenomena (R. Conte, R. Hegselmann and P. Terna, eds.) 493-512. Springer, Berlin.
    • (1997) Simulating Social Phenomena , pp. 493-512
    • Snijders, T.A.B.1    van Duijn, M.A.J.2
  • 32
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 35
    • 0039695663 scopus 로고
    • A stochastic model for directed graphs with transition rates determined by reciprocity
    • (K. F. Schuessler, ed.) Jossey-Bass, San Francisco
    • Wasserman, S. (1979). A stochastic model for directed graphs with transition rates determined by reciprocity. Sociological Methodology-1980 (K. F. Schuessler, ed.) 392-412. Jossey-Bass, San Francisco.
    • (1979) Sociological Methodology-1980 , pp. 392-412
    • Wasserman, S.1
  • 36
    • 0000120523 scopus 로고
    • Analyzing social networks as stochastic processes
    • Wasserman, S. (1980). Analyzing social networks as stochastic processes. J. Amer. Statist. Assoc. 75 280-294.
    • (1980) J. Amer. Statist. Assoc , vol.75 , pp. 280-294
    • Wasserman, S.1
  • 38
    • 0030491229 scopus 로고    scopus 로고
    • Logit models and logistic regression for social networks: I. An introduction to Markov graphs and p*
    • Wasserman, S. and Pattison, P. (1996). Logit models and logistic regression for social networks: I. An introduction to Markov graphs and p*.Psychometrika 61 401-425.
    • (1996) Psychometrika , vol.61 , pp. 401-425
    • Wasserman, S.1    Pattison, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.