-
1
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
AGRAWAL, O. P. (2002). Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 29 145-155
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
2
-
-
0035470879
-
Brownian-time processes: The PDE connection and the half-derivative generator
-
ALLOUBA, H. and ZHENG, W. (2001). Brownian-time processes: The PDE connection and the half-derivative generator. Ann. Probab. 29 1780-1795.
-
(2001)
Ann. Probab.
, vol.29
, pp. 1780-1795
-
-
Allouba, H.1
Zheng, W.2
-
3
-
-
0041901646
-
Lévy Processes and Stochastic Calculus
-
Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge
-
APPLEBAUM, D. (2004). Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 93. Cambridge Univ. Press, Cambridge.
-
(2004)
-
-
Applebaum, D.1
-
4
-
-
0003511516
-
Vector-valued Laplace Transforms and Cauchy Problems
-
Monographs in Mathematics 96. Birkhäuser, Basel
-
ARENDT, W., BATTY, C. J. K., HIEBER, M. and NEUBRANDER, F. (2001). Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96. Birkhäuser, Basel.
-
(2001)
-
-
Arendt, W.1
Batty, C.J.K.2
Hieber, M.3
Neubrander, F.4
-
5
-
-
0001311725
-
Stochastic solutions for fractional Cauchy problems
-
BAEUMER, B. andMEERSCHAERT, M. M. (2001). Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 481-500.
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, pp. 481-500
-
-
Baeumer, B.1
Meerschaert, M.M.2
-
6
-
-
14844311252
-
Advection and dispersion in time and space
-
BAEUMER, B.,BENSON, D. A. andMEERSCHAERT, M. M. (2005). Advection and dispersion in time and space. Phys. A 350 245-262.
-
(2005)
Phys. A
, vol.350
, pp. 245-262
-
-
Baeumer, B.1
Benson, D.A.2
Meerschaert, M.M.3
-
7
-
-
63549089594
-
Brownian subordinators and fractional Cauchy problems
-
Trans. Amer. Math. Soc. To appear
-
BAEUMER, B., MEERSCHAERT, M. M. and NANE, E. (2009). Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. To appear.
-
(2009)
-
-
Baeumer, B.1
Meerschaert, M.M.2
Nane, E.3
-
8
-
-
0003649040
-
Diffusions and Elliptic Operators
-
Springer, New York
-
BASS, R. F. (1998). Diffusions and Elliptic Operators. Springer, New York.
-
(1998)
-
-
Bass, R.F.1
-
9
-
-
3242750610
-
Limit theorem for continuous-time random walks with two time scales
-
BECKER-KERN, P., MEERSCHAERT, M. M. and SCHEFFLER, H.-P. (2004). Limit theorem for continuous-time random walks with two time scales. J. Appl. Probab. 41 455-466.
-
(2004)
J. Appl. Probab.
, vol.41
, pp. 455-466
-
-
Becker-Kern, P.1
Meerschaert, M.M.2
Scheffler, H.-P.3
-
10
-
-
0002163527
-
Some path properties of iterated Brownian motion
-
(Seattle, WA, 1992). Progress in Probability (E. Ç inlar, K. L. Chung and M. J. Sharpe, eds.)Birkhäuser, Boston, MA.
-
BURDZY, K. (1993). Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992). Progress in Probability (E. Ç inlar, K. L. Chung and M. J. Sharpe, eds.) 33 67-87. Birkhäuser, Boston, MA.
-
(1992)
In Seminar on Stochastic Processes
, vol.33
, pp. 67-87
-
-
Burdzy, K.1
-
11
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent, Part II
-
CAPUTO, M. (1967). Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 529-539.
-
(1967)
Geophys. J. R. Astr. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
12
-
-
0003939017
-
Heat Kernels and Spectral Theory
-
Cambridge Tracts in Mathematics 92. Cambridge Univ. Press, Cambridge
-
DAVIES, E. B. (1989). Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92. Cambridge Univ. Press, Cambridge.
-
(1989)
-
-
Davies, E.B.1
-
13
-
-
0003882735
-
Spectral Theory and Differential Operators
-
Cambridge Studies in Advanced Mathematics 42. Cambridge Univ. Press, Cambridge
-
DAVIES, E. B. (1995). Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics 42. Cambridge Univ. Press, Cambridge.
-
(1995)
-
-
Davies, E.B.1
-
14
-
-
26844508919
-
Iterated Brownian motion in an open set
-
DEBLASSIE, R. D. (2004). Iterated Brownian motion in an open set. Ann. Appl. Probab. 14 1529-1558.
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 1529-1558
-
-
Deblassie, R.D.1
-
15
-
-
0001767344
-
On the theory of the Brownian movement
-
EINSTEIN, A. (1906). On the theory of the Brownian movement. Annalen der Physik 4 371-381.
-
(1906)
Annalen der Physik
, vol.4
, pp. 371-381
-
-
Einstein, A.1
-
16
-
-
0003549965
-
Elliptic Partial Differential Equations of Second Order
-
Springer, Berlin. Reprint of the 1998 edition
-
GILBARG, D. and TRUDINGER, N. S. (2001). Elliptic Partial Differential Equations of Second Order. Springer, Berlin. Reprint of the 1998 edition.
-
(2001)
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
17
-
-
0141974618
-
Fractional diffusion processes: Probability distribution and continuous time random walk
-
GORENFLO, R. andMAINARDI, F. (2003). Fractional diffusion processes: Probability distribution and continuous time random walk. Lecture Notes in Phys. 621 148-166.
-
(2003)
Lecture Notes in Phys.
, vol.621
, pp. 148-166
-
-
Gorenflo, R.1
Mainardi, F.2
-
18
-
-
0001020008
-
The random walk method in pollutant transport simulation
-
In Groundwater Flow and Quality Modelling (E. Custodio, A. Gurgui and J. P. Lobo-Ferreira, eds.), Reidel, Norwell, MA
-
KINZELBACH, W. (1988). The random walk method in pollutant transport simulation. In Groundwater Flow and Quality Modelling (E. Custodio, A. Gurgui and J. P. Lobo-Ferreira, eds.) 227-245. Reidel, Norwell, MA.
-
(1988)
, pp. 227-245
-
-
Kinzelbach, W.1
-
19
-
-
3543060258
-
The Cauchy problem for evolution equations of fractional order
-
1468
-
KOCHUBĚI, A. N. (1989). The Cauchy problem for evolution equations of fractional order. Differentsial'nye Uravneniya 25 1359-1368, 1468.
-
(1989)
Differentsial'nye Uravneniya
, vol.25
, pp. 1359-1368
-
-
Kochuběi, A.N.1
-
21
-
-
18844468150
-
Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups
-
KRÄGELOH, A. M. (2003). Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups. J. Math. Anal. Appl. 283 459-467.
-
(2003)
J. Math. Anal. Appl.
, vol.283
, pp. 459-467
-
-
Krägeloh, A.M.1
-
22
-
-
0000145521
-
OnMittag-Leffler-type functions in fractional evolution processes
-
MAINARDI, F. andGORENFLO, R. (2000). OnMittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118 283-299.
-
(2000)
J. Comput. Appl. Math.
, vol.118
, pp. 283-299
-
-
Mainardi, F.1
Gorenflo, R.2
-
23
-
-
4043102385
-
Limit theorems for continuoustime random walks with infinite mean waiting times
-
MEERSCHAERT, M. M. and SCHEFFLER, H.-P. (2004). Limit theorems for continuoustime random walks with infinite mean waiting times. J. Appl. Probab. 41 623-638.
-
(2004)
J. Appl. Probab.
, vol.41
, pp. 623-638
-
-
Meerschaert, M.M.1
Scheffler, H.-P.2
-
24
-
-
41349099804
-
Stochastic solution of space-time fractional diffusion equations
-
MEERSCHAERT, M.M., BENSON, D. A., SCHEFFLER, H.-P. and BAEUMER, B. (2002). Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E (3) 65 1103-1106.
-
(2002)
Phys. Rev. E
, vol.65
, Issue.3
, pp. 1103-1106
-
-
Meerschaert, M.M.1
Benson, D.A.2
Scheffler, H.-P.3
Baeumer, B.4
-
25
-
-
4043151477
-
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
-
METZLER, R. and KLAFTER, J. (2004). The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 R161-R208
-
(2004)
J. Phys. A
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
26
-
-
0003492056
-
An Introduction to the Fractional Calculus and Fractional Differential Equations
-
Wiley, New York.
-
MILLER, K. S. and ROSS, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.
-
(1993)
-
-
Miller, K.S.1
Ross, B.2
-
27
-
-
0022492943
-
The realization of the generalized transfer in a medium with fractal geometry
-
NIGMATULLIN, R. R. (1986). The realization of the generalized transfer in a medium with fractal geometry. Phys. Status Solidi B 133 425-430.
-
(1986)
Phys. Status Solidi B
, vol.133
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
28
-
-
0003797958
-
Fractional Differential Equations
-
Mathematics in Science and Engineering 198. Academic Press, San Diego, CA
-
PODLUBNY, I. (1999). Fractional Differential Equations. Mathematics in Science and Engineering 198. Academic Press, San Diego, CA.
-
(1999)
-
-
Podlubny, I.1
-
29
-
-
0003655416
-
Real Analysis
-
2nd ed. Macmillan, New York
-
ROYDEN, H. L. (1968). Real Analysis, 2nd ed. Macmillan, New York.
-
(1968)
-
-
Royden, H.L.1
-
30
-
-
0003598080
-
Fractional Integrals and Derivatives: Theory and Applications
-
Gordon and Breach Science Publishers, Yverdon. Translated from the Russian original, revised by the authors.
-
SAMKO, S. G., KILBAS, A. A. andMARICHEV, O. I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon. Translated from the 1987 Russian original, revised by the authors.
-
(1987)
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
31
-
-
0004044683
-
Lévy Processes and Infinitely Divisible Distribution
-
Cambridge Studies in Advanced Mathematics Cambridge Univ. Press, Cambridge. Translated from the Japanese original, revised by the author
-
SATO, K.-I. (1999). Lévy Processes and Infinitely Divisible Distribution. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. Translated from the 1990 Japanese original, revised by the author.
-
(1999)
, pp. 68
-
-
Sato, K.-I.1
-
32
-
-
32544454809
-
Five years of continuous-time random walks in econophysics
-
In, (Kyoto, 2004) (A. Namatame, ed.). Springer, Berlin
-
SCALAS, E. (2004). Five years of continuous-time random walks in econophysics. In Proceedings of WEHIA (Kyoto, 2004) (A. Namatame, ed.). Springer, Berlin.
-
(2004)
Proceedings of WEHIA
-
-
Scalas, E.1
-
33
-
-
0001553919
-
Fractional diffusion and wave equations
-
SCHNEIDER, W. R. andWYSS, W. (1989). Fractional diffusion and wave equations. J. Math. Phys. 30 134-144.
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
34
-
-
0037933350
-
Potential theory of subordinate killed Brownian motion in a domain
-
SONG, R. and VONDRAČEK, Z. (2003). Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Related Fields 125 578-592.
-
(2003)
Probab. Theory Related Fields
, vol.125
, pp. 578-592
-
-
Song, R.1
Vondraček, Z.2
-
35
-
-
43949160116
-
Fractional kinetic equation for Hamiltonian chaos
-
ZASLAVSKY, G. M. (1994). Fractional kinetic equation for Hamiltonian chaos. Phys. D 76 110-122.
-
(1994)
Phys. D
, vol.76
, pp. 110-122
-
-
Zaslavsky, G.M.1
|