메뉴 건너뛰기




Volumn 91, Issue , 2012, Pages 56-66

A novel approach for optimization of correlated multiple responses based on desirability function and fuzzy logics

Author keywords

Adaptive neuro fuzzy inference system; Desirability function; Genetic algorithm; Multiple response optimization; Principal component analysis

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; DESIGN VARIABLES; DESIRABILITY FUNCTION; FEASIBLE REGIONS; HIGHLY NONLINEAR; MULTIPLE RESPONSE; MULTIPLE RESPONSE OPTIMIZATION; NEURO-FUZZY; NUMERICAL EXAMPLE; REAL-WORLD APPLICATION; SURFACE FITTING;

EID: 84861197550     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.03.001     Document Type: Article
Times cited : (34)

References (41)
  • 1
    • 0000049522 scopus 로고
    • The desirability function
    • Harrington E. The desirability function. Ind. Qual. Control 1965, 21:494-498.
    • (1965) Ind. Qual. Control , vol.21 , pp. 494-498
    • Harrington, E.1
  • 2
    • 0000432952 scopus 로고
    • Simultaneous optimization of several response variables
    • Derringer G., Suich R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12:214-219.
    • (1980) J. Qual. Technol. , vol.12 , pp. 214-219
    • Derringer, G.1    Suich, R.2
  • 3
    • 0345148406 scopus 로고    scopus 로고
    • Multicriteria models for the allocation of design parameter targets
    • Plante R.D. Multicriteria models for the allocation of design parameter targets. Eur. J. Oper. Res. 1999, 115:98-112.
    • (1999) Eur. J. Oper. Res. , vol.115 , pp. 98-112
    • Plante, R.D.1
  • 4
    • 0034362232 scopus 로고    scopus 로고
    • Simultaneous optimization of mechanical properties of steel by polynomial regression functions
    • Kim K.-J., Lin D.K.J. Simultaneous optimization of mechanical properties of steel by polynomial regression functions. Appl. Stat. 2000, 49:311-325.
    • (2000) Appl. Stat. , vol.49 , pp. 311-325
    • Kim, K.-J.1    Lin, D.K.J.2
  • 5
    • 0031188954 scopus 로고    scopus 로고
    • Quality loss function for optimization across multiple response surfaces
    • Ames A., Mattucci N., McDonald S., Szonyi G., Hawkins D. Quality loss function for optimization across multiple response surfaces. J. Qual. Technol. 1997, 29:339-346.
    • (1997) J. Qual. Technol. , vol.29 , pp. 339-346
    • Ames, A.1    Mattucci, N.2    McDonald, S.3    Szonyi, G.4    Hawkins, D.5
  • 6
    • 0027589020 scopus 로고
    • Strategies for robust multiresponse quality engineering
    • Pignatiello J. Strategies for robust multiresponse quality engineering. IIE Trans. 1993, 25:5-15.
    • (1993) IIE Trans. , vol.25 , pp. 5-15
    • Pignatiello, J.1
  • 7
    • 0032187643 scopus 로고    scopus 로고
    • A compromise approach to multiresponse optimization
    • Vining G. A compromise approach to multiresponse optimization. J. Qual. Technol. 1998, 30:309-313.
    • (1998) J. Qual. Technol. , vol.30 , pp. 309-313
    • Vining, G.1
  • 8
    • 18144386166 scopus 로고    scopus 로고
    • A new loss function-based method for multiresponse optimization
    • Ko Y.H., Kim K.J., Jun C.H. A new loss function-based method for multiresponse optimization. J. Qual. Technol. 2005, 37:50-59.
    • (2005) J. Qual. Technol. , vol.37 , pp. 50-59
    • Ko, Y.H.1    Kim, K.J.2    Jun, C.H.3
  • 9
    • 0033728003 scopus 로고    scopus 로고
    • Multi-response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis
    • Antony J. Multi-response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis. Qual. Reliab. Eng. Int. 2000, 16:3-8.
    • (2000) Qual. Reliab. Eng. Int. , vol.16 , pp. 3-8
    • Antony, J.1
  • 10
    • 29344457821 scopus 로고    scopus 로고
    • Multi-response optimization using weighted principal component
    • Liao H.C. Multi-response optimization using weighted principal component. Int. J. Adv. Manuf. Technol. 2006, 27:720-725.
    • (2006) Int. J. Adv. Manuf. Technol. , vol.27 , pp. 720-725
    • Liao, H.C.1
  • 11
    • 0342338310 scopus 로고    scopus 로고
    • Multi-response robust design by principal component analysis
    • Su C.T., Tong L.I. Multi-response robust design by principal component analysis. Total Qual. Manage. 1997, 8:409-416.
    • (1997) Total Qual. Manage. , vol.8 , pp. 409-416
    • Su, C.T.1    Tong, L.I.2
  • 13
    • 0006887320 scopus 로고    scopus 로고
    • Applying neural networks to achieve robust design for dynamic quality characteristics
    • Su C.T., Hsieh K.L. Applying neural networks to achieve robust design for dynamic quality characteristics. Int. J. Qual. Reliab. Manage. 1998, 15:509-519.
    • (1998) Int. J. Qual. Reliab. Manage. , vol.15 , pp. 509-519
    • Su, C.T.1    Hsieh, K.L.2
  • 14
    • 3242669799 scopus 로고    scopus 로고
    • A data envelopment analysis method for optimizing multi-response problem with censored data in the Taguchi method
    • Liao H.C. A data envelopment analysis method for optimizing multi-response problem with censored data in the Taguchi method. Comput. Ind. Eng. 2004, 46:817-835.
    • (2004) Comput. Ind. Eng. , vol.46 , pp. 817-835
    • Liao, H.C.1
  • 15
    • 0018032112 scopus 로고
    • Measuring the efficiency of decision making units
    • Charnes A., Cooper W.W., Rhodes E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2:429-444.
    • (1978) Eur. J. Oper. Res. , vol.2 , pp. 429-444
    • Charnes, A.1    Cooper, W.W.2    Rhodes, E.3
  • 16
    • 74349107425 scopus 로고    scopus 로고
    • Data envelopment analysis of multiple response experiments
    • Gutierrez E., Lozano S. Data envelopment analysis of multiple response experiments. Appl. Math. Model. 2010, 34:1139-1148.
    • (2010) Appl. Math. Model. , vol.34 , pp. 1139-1148
    • Gutierrez, E.1    Lozano, S.2
  • 17
    • 33748276634 scopus 로고    scopus 로고
    • Multiple response optimization using Taguchi methodology and neuro-fuzzy based model
    • Antony J., Anand R.B., Kumar M., Tiwari M.K. Multiple response optimization using Taguchi methodology and neuro-fuzzy based model. J. Manuf. Technol. Manage. 2006, 17:908-925.
    • (2006) J. Manuf. Technol. Manage. , vol.17 , pp. 908-925
    • Antony, J.1    Anand, R.B.2    Kumar, M.3    Tiwari, M.K.4
  • 18
    • 0035423777 scopus 로고    scopus 로고
    • Optimization of multiple quality responses involving qualitative and quantitative characteristics in IC manufacturing using neural networks
    • Hsieh K.L., Tong L.I. Optimization of multiple quality responses involving qualitative and quantitative characteristics in IC manufacturing using neural networks. Comput. Ind. 2001, 46:1-12.
    • (2001) Comput. Ind. , vol.46 , pp. 1-12
    • Hsieh, K.L.1    Tong, L.I.2
  • 19
    • 33645511446 scopus 로고    scopus 로고
    • Parameter optimization of a multi-response process for lead frame manufacturing by employing artificial neural networks
    • Hsieh K.L. Parameter optimization of a multi-response process for lead frame manufacturing by employing artificial neural networks. Int. Adv. Manuf. Technol. 2006, 28:584-591.
    • (2006) Int. Adv. Manuf. Technol. , vol.28 , pp. 584-591
    • Hsieh, K.L.1
  • 21
    • 45149085865 scopus 로고    scopus 로고
    • A data mining approach to dynamic multiple responses in Taguchi experimental design
    • Chang H.H. A data mining approach to dynamic multiple responses in Taguchi experimental design. Expert Syst. Appl. 2008, 35:1095-1103.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1095-1103
    • Chang, H.H.1
  • 22
    • 77957907431 scopus 로고    scopus 로고
    • Neuro-genetic approach to optimiza parameter design of dynamic multiresponse experiments
    • H.H. Chang, Y.K. Chen, Neuro-genetic approach to optimiza parameter design of dynamic multiresponse experiments. Applied Soft Computing, ASOC-749, 2010.
    • (2010) Applied Soft Computing, ASOC-749
    • Chang, H.H.1    Chen, Y.K.2
  • 23
    • 0037449045 scopus 로고    scopus 로고
    • Optimization of TQFP modeling process using neuro-fuzzy-GA approach
    • Chiang T.L., Su C.T. Optimization of TQFP modeling process using neuro-fuzzy-GA approach. Eur. J. Operational Res. 2003, 147:156-164.
    • (2003) Eur. J. Operational Res. , vol.147 , pp. 156-164
    • Chiang, T.L.1    Su, C.T.2
  • 24
    • 0037052938 scopus 로고    scopus 로고
    • Optimization of multiple responses using a fuzzy-rule based inference system
    • Lu D., Antony J. Optimization of multiple responses using a fuzzy-rule based inference system. Int. J. Prod. Res. 2002, 40:1613-1625.
    • (2002) Int. J. Prod. Res. , vol.40 , pp. 1613-1625
    • Lu, D.1    Antony, J.2
  • 25
    • 0033742870 scopus 로고    scopus 로고
    • Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics
    • Lin J.L., Wang K.S., Yan B.H., Tarng Y.S. Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J. Mater. Process. Technol. 2000, 102:48-55.
    • (2000) J. Mater. Process. Technol. , vol.102 , pp. 48-55
    • Lin, J.L.1    Wang, K.S.2    Yan, B.H.3    Tarng, Y.S.4
  • 26
    • 0036905441 scopus 로고    scopus 로고
    • Neuro-fuzzy and genetic algorithm in multiple response optimization
    • Cheng C.B., Cheng C.J., Lee E.S. Neuro-fuzzy and genetic algorithm in multiple response optimization. Comput. Math. Appl. 2002, 44:1503-1514.
    • (2002) Comput. Math. Appl. , vol.44 , pp. 1503-1514
    • Cheng, C.B.1    Cheng, C.J.2    Lee, E.S.3
  • 27
    • 49349136235 scopus 로고
    • Fuzzy programming and linear programming with several objective functions
    • Zimmermann H. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1978, 1:45-55.
    • (1978) Fuzzy Sets Syst. , vol.1 , pp. 45-55
    • Zimmermann, H.1
  • 28
    • 84870876464 scopus 로고    scopus 로고
    • An integrated approach to optimize parameter design of multi-response processes based on Taguchi method and artificial intelligence
    • Sibalija T.V., Majstorovic V.D. An integrated approach to optimize parameter design of multi-response processes based on Taguchi method and artificial intelligence. J. Intell. Manuf. 2011, 10.1007/s10845-010-0451-y.
    • (2011) J. Intell. Manuf.
    • Sibalija, T.V.1    Majstorovic, V.D.2
  • 29
    • 79955674622 scopus 로고    scopus 로고
    • Multi-response design of ND:YAG laser drilling of Ni-based superalloy sheets using Taguchi's quality loss function, multivariate statistical methods and artificial intelligence
    • Sibalija T.V., Petronic S.Z., Majstorovic V.D., Prokic-Cvetkovic R., Milosavljevic A. Multi-response design of ND:YAG laser drilling of Ni-based superalloy sheets using Taguchi's quality loss function, multivariate statistical methods and artificial intelligence. Int. J. Adv. Manuf. Technol. 2011, 10.1007/s00170-010-2945-3.
    • (2011) Int. J. Adv. Manuf. Technol.
    • Sibalija, T.V.1    Petronic, S.Z.2    Majstorovic, V.D.3    Prokic-Cvetkovic, R.4    Milosavljevic, A.5
  • 30
    • 84861186397 scopus 로고    scopus 로고
    • The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process.
    • Tarng Y.S., Yang W.H., Juang S.C., 2000. The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process.
    • (2000)
    • Tarng, Y.S.1    Yang, W.H.2    Juang, S.C.3
  • 31
    • 18544373980 scopus 로고    scopus 로고
    • Optimization of correlated multiple quality characteristics robust design using principal component analysis
    • Wu F.C., Chyu C.C. Optimization of correlated multiple quality characteristics robust design using principal component analysis. J. Manuf. Syst. 2004, 2:134-143.
    • (2004) J. Manuf. Syst. , vol.2 , pp. 134-143
    • Wu, F.C.1    Chyu, C.C.2
  • 32
    • 29144522382 scopus 로고    scopus 로고
    • Multi-response optimization in friction properties of PBT composites using Taguchi method and principal component analysis
    • Fung C.P., Kang P.C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principal component analysis. J. Mater. Process. Technol. 2005, 170:602-610.
    • (2005) J. Mater. Process. Technol. , vol.170 , pp. 602-610
    • Fung, C.P.1    Kang, P.C.2
  • 33
    • 78149471517 scopus 로고    scopus 로고
    • Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding
    • B.C. Routara, S.D. Mohanty, S. Datta, A. Bandyopadhyay, S.S. Mahapatra, Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. Int. J. Adv. Manuf. Technol. (2010), http://dx.doi.org/10.1007/s00170-010-2599-1.
    • (2010) Int. J. Adv. Manuf. Technol.
    • Routara, B.C.1    Mohanty, S.D.2    Datta, S.3    Bandyopadhyay, A.4    Mahapatra, S.S.5
  • 34
    • 71949100309 scopus 로고    scopus 로고
    • Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study
    • Datta S., Nandi G., Bandyopadhyay A., Pal P.K. Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study. Int. J. Adv. Manuf. Technol. 2009, 45:276-286.
    • (2009) Int. J. Adv. Manuf. Technol. , vol.45 , pp. 276-286
    • Datta, S.1    Nandi, G.2    Bandyopadhyay, A.3    Pal, P.K.4
  • 35
    • 77953122319 scopus 로고    scopus 로고
    • Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis
    • Ribeiro J.S., Teofilo R.F., Augusto F., Ferreira M.M.C. Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis. Chemom. Intell. Lab. Syst. 2010, 102:45-52.
    • (2010) Chemom. Intell. Lab. Syst. , vol.102 , pp. 45-52
    • Ribeiro, J.S.1    Teofilo, R.F.2    Augusto, F.3    Ferreira, M.M.C.4
  • 36
    • 27944465204 scopus 로고    scopus 로고
    • Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution
    • Tong L.I., Wang C.H., Chen H.C. Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution. Int. J. Adv. Manuf. Technol. 2005, 27:407-414.
    • (2005) Int. J. Adv. Manuf. Technol. , vol.27 , pp. 407-414
    • Tong, L.I.1    Wang, C.H.2    Chen, H.C.3
  • 37
    • 33847754236 scopus 로고    scopus 로고
    • Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model
    • Wang C.H. Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model. Int. J. Adv. Manuf. Technol. 2007, 32:617-624.
    • (2007) Int. J. Adv. Manuf. Technol. , vol.32 , pp. 617-624
    • Wang, C.H.1
  • 38
    • 84976998771 scopus 로고
    • The application of electronic computers to factor analysis
    • Kaiser H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20:141-151.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 141-151
    • Kaiser, H.F.1
  • 40
    • 25144470331 scopus 로고    scopus 로고
    • Optimization of multiple responses considering both location and dispersion effects
    • Kim K.-J., Lin D.K.J. Optimization of multiple responses considering both location and dispersion effects. Eur. J. Oper. Res. 2006, 169:133-145.
    • (2006) Eur. J. Oper. Res. , vol.169 , pp. 133-145
    • Kim, K.-J.1    Lin, D.K.J.2
  • 41
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based Fuzzy inference systems
    • Jang J.-S.R. ANFIS: adaptive-network-based Fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 1993, 23:665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.