메뉴 건너뛰기




Volumn 218, Issue 20, 2012, Pages 10334-10340

Controllability for a class of fractional-order neutral evolution control systems

Author keywords

Exact controllability; Fractional control systems; Semigroup theory

Indexed keywords

EXACT CONTROLLABILITY; FIXED POINT ANALYSIS; FRACTIONAL DIFFERENTIAL; FRACTIONAL SYSTEMS; NEUTRAL CONTROL SYSTEMS; NEUTRAL DIFFERENTIAL EQUATION; NEUTRAL EVOLUTION; NON-LOCAL CONDITIONS; SEMI-GROUP THEORY; SUFFICIENT CONDITIONS;

EID: 84861182836     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.03.093     Document Type: Article
Times cited : (141)

References (36)
  • 1
    • 67651103488 scopus 로고    scopus 로고
    • Existence results for differential equations with fractional order and impulses
    • R.P. Agarwal, M. Benchohra, and B.A. Slimani Existence results for differential equations with fractional order and impulses Mem. Differ. Equat. Math. Phys. 44 2008 1 21
    • (2008) Mem. Differ. Equat. Math. Phys. , vol.44 , pp. 1-21
    • Agarwal, R.P.1    Benchohra, M.2    Slimani, B.A.3
  • 2
    • 63449090309 scopus 로고    scopus 로고
    • Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions
    • N. Abada, M. Benchohra, and H. Hammouche Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions J. Differ. Equat. 246 2009 3834 3863
    • (2009) J. Differ. Equat. , vol.246 , pp. 3834-3863
    • Abada, N.1    Benchohra, M.2    Hammouche, H.3
  • 3
    • 74249119643 scopus 로고    scopus 로고
    • Impulsive fractional differential equations with variable times
    • M. Benchohra, and F. Berhoun Impulsive fractional differential equations with variable times Comput. Math. Appl. 59 2010 1245 1252
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1245-1252
    • Benchohra, M.1    Berhoun, F.2
  • 5
    • 0037107070 scopus 로고    scopus 로고
    • Approximate controllability of semilinear functional equations in Hilbert spaces
    • J.P. Dauer, and N.I. Mahmudov Approximate controllability of semilinear functional equations in Hilbert spaces J. Math. Anal. Appl. 273 2002 310 327
    • (2002) J. Math. Anal. Appl. , vol.273 , pp. 310-327
    • Dauer, J.P.1    Mahmudov, N.I.2
  • 6
    • 0034688391 scopus 로고    scopus 로고
    • On controllability of linear stochastic systems
    • N.I. Mahmudov, and A. Denker On controllability of linear stochastic systems Int. J. Contr. 73 2000 144 151
    • (2000) Int. J. Contr. , vol.73 , pp. 144-151
    • Mahmudov, N.I.1    Denker, A.2
  • 7
    • 0346903407 scopus 로고    scopus 로고
    • Controllability of semilinear stochastic systems in Hilbert spaces
    • DOI 10.1016/S0022-247X(03)00592-4
    • N.I. Mahmudov Controllability of semilinear stochastic systems in Hilbert spaces J. Math. Anal. Appl. 288 2003 197 211 (Pubitemid 37544638)
    • (2003) Journal of Mathematical Analysis and Applications , vol.288 , Issue.1 , pp. 197-211
    • Mahmudov, N.I.1
  • 8
    • 14044253446 scopus 로고    scopus 로고
    • Controllability results for functional semilinear differential inclusions in Fréchet spaces
    • DOI 10.1016/j.na.2004.12.002, PII S0362546X04005681
    • M. Benchohra, and A. Ouahab Controllability results for functional semilinear differential inclusions in Frechet spaces Nonlinear Anal. TMA 61 2005 405 423 (Pubitemid 40274753)
    • (2005) Nonlinear Analysis, Theory, Methods and Applications , vol.61 , Issue.3 , pp. 405-423
    • Benchohra, M.1    Ouahab, A.2
  • 9
    • 44949272606 scopus 로고
    • Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem
    • L. Byszewski Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem J. Math. Anal. Appl. 162 1991 494 505
    • (1991) J. Math. Anal. Appl. , vol.162 , pp. 494-505
    • Byszewski, L.1
  • 10
    • 33344467513 scopus 로고    scopus 로고
    • Controllability of semilinear differential equations and inclusions via semigroup theory in banach spaces
    • DOI 10.1016/S0034-4877(05)80096-5, PII S0034487705800965
    • L. Górniewicz, S.K. Ntouyas, and D. O'Regan Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces Rep. Math. Phys 56 2005 437 470 (Pubitemid 43285844)
    • (2005) Reports on Mathematical Physics , vol.56 , Issue.3 , pp. 437-470
    • Gorniewicz, L.1    Ntouyas, S.K.2    O'Regan, D.3
  • 11
    • 79952440066 scopus 로고    scopus 로고
    • Controllability of impulsive differential systems with nonlocal conditions
    • S. Ji, L. Li, and M. Wang Controllability of impulsive differential systems with nonlocal conditions Appl. Math. Comput. 217 2011 6981 6989
    • (2011) Appl. Math. Comput. , vol.217 , pp. 6981-6989
    • Ji, S.1    Li, L.2    Wang, M.3
  • 12
    • 79960984881 scopus 로고    scopus 로고
    • Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems
    • A. Debbouche, and D. Baleanu Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems Comput. Math. Appl. 62 2011 1442 1450
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1442-1450
    • Debbouche, A.1    Baleanu, D.2
  • 13
    • 31144476952 scopus 로고    scopus 로고
    • Controllability of non-densely defined functional differential systems in abstract space
    • DOI 10.1016/j.aml.2005.04.016, PII S0893965905002429
    • X. Fu Controllability of non-densely defined functional differential systems in abstract space Appl. Math. Lett. 19 2006 369 377 (Pubitemid 43132930)
    • (2006) Applied Mathematics Letters , vol.19 , Issue.4 , pp. 369-377
    • Fu, X.1
  • 14
    • 61449146161 scopus 로고    scopus 로고
    • Constrained controllability of semilinear systems with delays
    • J. Klamka Constrained controllability of semilinear systems with delays Nonlinear Dynam. 56 2009 169 177
    • (2009) Nonlinear Dynam. , vol.56 , pp. 169-177
    • Klamka, J.1
  • 15
    • 64149097055 scopus 로고    scopus 로고
    • Stochastic controllability of systems with multiple delays in control
    • J. Klamka Stochastic controllability of systems with multiple delays in control Int. J. Appl. Math. Comput. Sci. 19 2009
    • (2009) Int. J. Appl. Math. Comput. Sci. , vol.19
    • Klamka, J.1
  • 16
    • 57749093597 scopus 로고    scopus 로고
    • Constrained controllability of semilinear systems with delayed controls
    • J. Klamka Constrained controllability of semilinear systems with delayed controls B. Pol. Acad. Tech. 56 2008 333 337
    • (2008) B. Pol. Acad. Tech. , vol.56 , pp. 333-337
    • Klamka, J.1
  • 17
    • 4143066778 scopus 로고    scopus 로고
    • Constrained controllability of semilinear systems with multiple delays in control
    • J. Klamka Constrained controllability of semilinear systems with multiple delays in control B. Pol. Acad. Sci. Tech. Sci. 52 2004 25 30
    • (2004) B. Pol. Acad. Sci. Tech. Sci. , vol.52 , pp. 25-30
    • Klamka, J.1
  • 18
    • 80053035452 scopus 로고    scopus 로고
    • Controllability and minimum energy control problem of fractional discrete-time systems
    • D. Baleanu, Z.B. Guvenc, J.A. Tenreiro Machado, Springer-Verlag New York
    • J. Klamka Controllability and minimum energy control problem of fractional discrete-time systems D. Baleanu, Z.B. Guvenc, J.A. Tenreiro Machado, New Trends in Nanotechnology and Fractional Calculus 2010 Springer-Verlag New York 503 509
    • (2010) New Trends in Nanotechnology and Fractional Calculus , pp. 503-509
    • Klamka, J.1
  • 19
    • 84861202523 scopus 로고    scopus 로고
    • Local controllability of fractional discrete-time semilinear systems
    • J. Klamka Local controllability of fractional discrete-time semilinear systems Acta Mech. et Automat. 15 2011 55 58
    • (2011) Acta Mech. et Automat. , vol.15 , pp. 55-58
    • Klamka, J.1
  • 20
    • 0347093230 scopus 로고    scopus 로고
    • Schauder's fixed-point theorem in nonlinear controllability problems
    • J. Klamka Schauder's fixed-point theorem in nonlinear controllability problems Contr. Cybern. 29 2000 153 165
    • (2000) Contr. Cybern. , vol.29 , pp. 153-165
    • Klamka, J.1
  • 21
    • 0034262421 scopus 로고    scopus 로고
    • Constrained approximate controllability
    • DOI 10.1109/9.880640
    • J. Klamka Constrained approximate controllability IEEE Trans. Automat. Contr. 45 2000 1745 1749 (Pubitemid 32067041)
    • (2000) IEEE Transactions on Automatic Control , vol.45 , Issue.9 , pp. 1745-1749
    • Klamka, J.1
  • 22
    • 0035420226 scopus 로고    scopus 로고
    • Constrained controllability of semilinear systems
    • DOI 10.1016/S0362-546X(01)00415-1, PII S0362546X01004151
    • J. Klamka Constrained controllability of semilinear systems Nonlinear Anal. 47 2001 2939 2949 (Pubitemid 32782369)
    • (2001) Nonlinear Analysis, Theory, Methods and Applications , vol.47 , Issue.5 , pp. 2939-2949
    • Klamka, J.1
  • 23
    • 0037037426 scopus 로고    scopus 로고
    • Constrained exact controllability of semilinear systems
    • DOI 10.1016/S0167-6911(02)00184-6, PII S0167691102001846
    • J. Klamka Constrained exact controllability of semilinear systems Syst. Contr. Lett. 47 2002 139 147 (Pubitemid 34965450)
    • (2002) Systems and Control Letters , vol.47 , Issue.2 , pp. 139-147
    • Klamka, J.1
  • 25
    • 71549132795 scopus 로고    scopus 로고
    • Existence of mild solution for some fractional differential equations with nonlocal conditions
    • G.M. Mophou, and G.M. N'Guérékata Existence of mild solution for some fractional differential equations with nonlocal conditions Semigroup Forum 79 2 2009 322 335
    • (2009) Semigroup Forum , vol.79 , Issue.2 , pp. 322-335
    • Mophou, G.M.1    N'Guérékata, G.M.2
  • 26
    • 71549128004 scopus 로고    scopus 로고
    • Existence and uniqueness of mild solutions to impulsive fractional differential equations
    • G.M. Mophou Existence and uniqueness of mild solutions to impulsive fractional differential equations Nonlinear Anal. 72 2010 1604 1615
    • (2010) Nonlinear Anal. , vol.72 , pp. 1604-1615
    • Mophou, G.M.1
  • 27
    • 58149231350 scopus 로고    scopus 로고
    • A Cauchy problem for some fractional abstract differential equation with nonlocal conditions
    • G.M.N'uéréata A Cauchy problem for some fractional abstract differential equation with nonlocal conditions Nonlinear Anal. TMA 70 5 2009 1873 1876
    • (2009) Nonlinear Anal. TMA , vol.70 , Issue.5 , pp. 1873-1876
    • N'Uéréata, G.M.1
  • 29
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. 69 2008 2677 2682
    • (2008) Nonlinear Anal. , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 30
    • 77953595578 scopus 로고    scopus 로고
    • Approximate controllability of second-order stochastic differential equations with impulsive effects
    • R. Sakthivel, Y. Ren, and N.I. Mahmudov Approximate controllability of second-order stochastic differential equations with impulsive effects Modern Phys. Lett. B 24 2010 1559 1572
    • (2010) Modern Phys. Lett. B , vol.24 , pp. 1559-1572
    • Sakthivel, R.1    Ren, Y.2    Mahmudov, N.I.3
  • 31
    • 76249115782 scopus 로고    scopus 로고
    • Approximate controllability of impulsive differential equations with state-dependent delay
    • R. Sakthivel, and E.R. Anandhi Approximate controllability of impulsive differential equations with state-dependent delay Int. J. Contr. 83 2010 387 393
    • (2010) Int. J. Contr. , vol.83 , pp. 387-393
    • Sakthivel, R.1    Anandhi, E.R.2
  • 32
    • 77958556999 scopus 로고    scopus 로고
    • Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay
    • R. Sakthivel, Juan J. Nieto, and N.I. Mahmudov Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay Taiwan. J. Math. 14 2010 1777 1797
    • (2010) Taiwan. J. Math. , vol.14 , pp. 1777-1797
    • Sakthivel, R.1    Nieto, J.J.2    Mahmudov, N.I.3
  • 34
    • 0031567803 scopus 로고    scopus 로고
    • Basic theory for nonresonance impulsive periodic problems of first order
    • DOI 10.1006/jmaa.1997.5207, PII S0022247X97952070
    • J.J. Nieto Basic theory for nonresonance impulsive periodic problems of first order J. Math. Anal. Appl. 205 1997 423 433 (Pubitemid 127170288)
    • (1997) Journal of Mathematical Analysis and Applications , vol.205 , Issue.2 , pp. 423-433
    • Nieto, J.J.1
  • 35
    • 74149093181 scopus 로고    scopus 로고
    • Existence of mild solutions for fractional neutral evolution equations
    • Y. Zhou, and F. Jiao Existence of mild solutions for fractional neutral evolution equations Comput. Math. Appl. 59 2010 1063 1077
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1063-1077
    • Zhou, Y.1    Jiao, F.2
  • 36
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • Y. Zhou, and F. Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. Real World Appl. 11 2010 4465 4475
    • (2010) Nonlinear Anal. Real World Appl. , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.