-
1
-
-
0019637377
-
A physicoempirical model to predict the soil moisture characteristics from particle size distribution and bulk density data
-
Arya, L. A., and J. F. Paris. 1981. A physicoempirical model to predict the soil moisture characteristics from particle size distribution and bulk density data. Soil Sci. Soc. Am. J. 45:1023-1029.
-
(1981)
Soil Sci. Soc. Am. J.
, vol.45
, pp. 1023-1029
-
-
Arya, L.A.1
Paris, J.F.2
-
2
-
-
0034101402
-
The water retention function for a model of soil structure with pore and solid fractal distributions
-
DOI 10.1046/j.1365-2389.2000.00278.x
-
Bird, N. R. A., E. Perrier, and M. Rieu. 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51:55-63. (Pubitemid 30147346)
-
(2000)
European Journal of Soil Science
, vol.51
, Issue.1
, pp. 55-63
-
-
Bird, N.R.A.1
Perrier, E.2
Rieu, M.3
-
3
-
-
0031658544
-
Use of a fractal model for determining soil water retention curves
-
DOI 10.1016/S0016-7061(98)00028-7, PII S0016706198000287
-
Comegna, V., P. Damiani, and A. Sommella. 1998. Use of a fractal model for determining soil water retention curves. Geoderma. 85:307-323. (Pubitemid 28397970)
-
(1998)
Geoderma
, vol.85
, Issue.4
, pp. 307-323
-
-
Comegna, V.1
Damiani, P.2
Sommella, A.3
-
4
-
-
77954268505
-
Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry
-
Fallico, C., A. M. Tarquis, S. De Bartoloa, and M. Veltria. 2010. Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry. Eur. J. Soil Sci. 61:425-436.
-
(2010)
Eur. J. Soil Sci.
, vol.61
, pp. 425-436
-
-
Fallico, C.1
Tarquis, A.M.2
De Bartoloa, S.3
Veltria, M.4
-
5
-
-
0032958635
-
Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling
-
Filgueira, R. R., Y. A. Pachepsky, L. L. Fournier, G. O. Sarli, and A. Aragon. 1999. Comparison of fractal dimensions estimated from aggregate masssize distribution and water retention scaling. Soil Sci. 164:217-223. (Pubitemid 29212009)
-
(1999)
Soil Science
, vol.164
, Issue.4
, pp. 217-223
-
-
Filgueira, R.R.1
Pachepsky, Ya.A.2
Fournier, L.L.3
Sarli, G.O.4
Aragon, A.5
-
8
-
-
67349113402
-
The relationship between surface fractal dimension and soil water content at permanent wilting point
-
Ghanbarian-Alavijeh, B., and H. Millán. 2009. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma. 151:224-232.
-
(2009)
Geoderma.
, vol.151
, pp. 224-232
-
-
Ghanbarian-Alavijeh, B.1
Millán, H.2
-
9
-
-
79951498923
-
Point pedotransfer functions for estimating soil water retention curve
-
Ghanbarian-Alavijeh, B., and H. Millán. 2010. Point pedotransfer functions for estimating soil water retention curve. Int. Agrophys. 24:243-251.
-
(2010)
Int. Agrophys.
, vol.24
, pp. 243-251
-
-
Ghanbarian-Alavijeh, B.1
Millán, H.2
-
10
-
-
79952228197
-
A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve
-
Ghanbarian-Alavijeh, B., H. Millán, and G. Huang. 2011. A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can. J. Soil Sci. 91:1-14.
-
(2011)
Can. J. Soil Sci.
, vol.91
, pp. 1-14
-
-
Ghanbarian-Alavijeh, B.1
Millán, H.2
Huang, G.3
-
11
-
-
0026283077
-
Pore scale spatial analysis of two immiscible fluids in porous media
-
Gvirtzman, H., and P. V. Roberts. 1991. Pore scale spatial analysis of two immiscible fluids in porous media. Water Resour. Res. 27:1165-1176.
-
(1991)
Water Resour. Res.
, vol.27
, pp. 1165-1176
-
-
Gvirtzman, H.1
Roberts, P.V.2
-
12
-
-
0022853891
-
Predicting the water retention curve from particle size distribution: 1. Sandy soils without organic matter
-
Haverkamp, R., and J. Y. Parlange. 1986. Predicting the water retention curve from particle size distribution: 1. Sandy soils without organic matter. Soil Sci. 142:325-339.
-
(1986)
Soil Sci.
, vol.142
, pp. 325-339
-
-
Haverkamp, R.1
Parlange, J.Y.2
-
13
-
-
0036475349
-
Application of critical path analysis to fractal porous media: Comparison with examples from the Hanford site
-
DOI 10.1016/S0309-1708(01)00057-4, PII S0309170801000574
-
Hunt, A. G., and G. W. Gee. 2002a. Application of critical path analysis to fractal porous media: Comparison with examples from the Hanford site. Adv. Water Resour. 25:129-146. (Pubitemid 34281427)
-
(2002)
Advances in Water Resources
, vol.25
, Issue.2
, pp. 129-146
-
-
Hunt, A.G.1
Gee, G.W.2
-
14
-
-
83455218521
-
Water-retention of fractal soil models using continuum percolation theory: Tests of hanford site soils
-
Hunt, A. G., and G. W. Gee. 2002b. Water-retention of fractal soil models using continuum percolation theory: Tests of Hanford site soils. Vadose Zone J. 1:252-260.
-
(2002)
Vadose Zone J.
, vol.1
, pp. 252-260
-
-
Hunt, A.G.1
Gee, G.W.2
-
15
-
-
34547924988
-
Hydraulic conductivity limited equilibration: Effect on water retention characteristics
-
Hunt, A. G., and T. E. Skinner. 2005. Hydraulic conductivity limited equilibration: Effect on water retention characteristics. Vadose Zone J. 4:145-150.
-
(2005)
Vadose Zone J.
, vol.4
, pp. 145-150
-
-
Hunt, A.G.1
Skinner, T.E.2
-
16
-
-
33646533054
-
-
2nd ed. Springer, Berlin, Germany
-
Hunt, A., and R. Ewing. 2009. Percolation Theory for Flow in Porous Media. 2nd ed. Springer, Berlin, Germany, pp. 319
-
(2009)
Percolation Theory for Flow in Porous Media
, pp. 319
-
-
Hunt, A.1
Ewing, R.2
-
17
-
-
33747422018
-
Use of a lognormal distribution model for estimating soil water retention curves from particle-size distribution data
-
DOI 10.1016/j.jhydrol.2005.09.005, PII S0022169405004427
-
Hwang, S. I., and S. I. Choi. 2006. Use of a lognormal distribution model for estimating soil water retention curves from particle-size distribution data. J. Hydrol. 323:325-334. (Pubitemid 44250824)
-
(2006)
Journal of Hydrology
, vol.323
, Issue.1-4
, pp. 325-334
-
-
Hwang, S.Il.1
Choi, S.Il.2
-
18
-
-
0031968910
-
Estimating the soil water retention from particle-size distributions: A fractal approach
-
Kravchenko, A., and R. Zhang. 1998. Estimating the soilwater retention from particle size distributions: A fractal approach. Soil Sci. 163:171-179. (Pubitemid 28154062)
-
(1998)
Soil Science
, vol.163
, Issue.3
, pp. 171-179
-
-
Kravchenko, A.1
Zhang, R.2
-
19
-
-
36849010987
-
Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models
-
DOI 10.2136/vzj2007.0019
-
Nimmo, J. R., W. N. Herkelrath, and A. M. Laguna Luna. 2007. Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models. Vadose Zone J. 6:766-773. (Pubitemid 350232071)
-
(2007)
Vadose Zone Journal
, vol.6
, Issue.4
, pp. 766-773
-
-
Nimmo, J.R.1
Herkelrath, W.N.2
Laguna Luna, A.M.3
-
20
-
-
0029660799
-
Models of the water retention curve for soils with a fractal pore size distribution
-
Perrier, E., M. Rieu, G. Sposito, and G. de Marsily. 1996. Models of the water retention curve for soils with a fractal pore size distribution.Water Resour Res. 32:3025-3031.
-
(1996)
Water Resour Res.
, vol.32
, pp. 3025-3031
-
-
Perrier, E.1
Rieu, M.2
Sposito, G.3
De Marsily, G.4
-
21
-
-
0032914345
-
Generalizing the fractal model of soil structure: The pore-solid fractal approach
-
DOI 10.1016/S0016-7061(98)00102-5, PII S0016706198001025
-
Perrier, E., N. Bird, and M. Rieu. 1999. Generalizing a fractal model of soil structure: The pore-solid fractal approach. Geoderma. 88:137-164. (Pubitemid 29114428)
-
(1999)
Geoderma
, vol.88
, Issue.3-4
, pp. 137-164
-
-
Perrier, E.1
Bird, N.2
Rieu, M.3
-
22
-
-
0028974747
-
Linear and nonlinear estimates of fractal dimension for soil aggregate fragmentation
-
Rasiah, V., E. Perfect, and B. D. Kay. 1995. Linear and nonlinear estimates of fractal dimension for soil aggregate fragmentation. Soil Sci. Soc. Am. J. 59:1:83-87.
-
(1995)
Soil Sci. Soc. Am. J.
, vol.59
, Issue.1
, pp. 83-87
-
-
Rasiah, V.1
Perfect, E.2
Kay, B.D.3
-
23
-
-
0026359888
-
Fractal fragmentation, soil porosity, and soil water properties: I. Theory, ii. Applications
-
Rieu, M., and G. Sposito. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. Theory, II. Applications. Soil Sci. Soc. Am. J. 55:1231-1244.
-
(1991)
Soil Sci. Soc. Am. J.
, vol.55
, pp. 1231-1244
-
-
Rieu, M.1
Sposito, G.2
-
25
-
-
0003876171
-
-
The MathWorks Inc.,. Version 7.3. The MathWorks Inc., Natick, MA
-
The MathWorks Inc., 2006. MATLAB: The Language of Technical Computing. Version 7.3. The MathWorks Inc., Natick, MA.
-
(2006)
MATLAB: The Language of Technical Computing
-
-
-
26
-
-
0024813234
-
Application of fractal mathematics to soil water retention estimation
-
Tyler, S. W., and S. W. Wheatcraft. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53:987-996. (Pubitemid 20399880)
-
(1989)
Soil Science Society of America Journal
, vol.53
, Issue.4
, pp. 987-996
-
-
Tyler, S.W.1
Wheatcraft, S.W.2
-
27
-
-
0025590135
-
Fractal processes in soil water retention
-
Tyler, S. W., and S. W. Wheatcraft. 1990. Fractal processes in soil water retention. Water Resour. Res. 26:1047-1054.
-
(1990)
Water Resour. Res.
, vol.26
, pp. 1047-1054
-
-
Tyler, S.W.1
Wheatcraft, S.W.2
-
28
-
-
18644384216
-
Testing the pore-solid fractal model for the soil water retention function
-
Wang, K., R. Zhang, and F. Wang. 2005. Testing the pore-solid fractal model for the soil water retention function. Soil Sci. Soc. Am. J. 69:776-782.
-
(2005)
Soil Sci. Soc. Am. J.
, vol.69
, pp. 776-782
-
-
Wang, K.1
Zhang, R.2
Wang, F.3
|