메뉴 건너뛰기




Volumn 91, Issue 1, 2011, Pages 1-14

A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve

Author keywords

Fractal approach; Pore solid fractal; Prefractal models; Soil water retention curve

Indexed keywords

FRACTAL ANALYSIS; HYDRAULIC PROPERTY; NUMERICAL MODEL; PARAMETERIZATION; POLLUTANT TRANSPORT; POROUS MEDIUM; SOIL WATER; WATER FLOW; WATER RETENTION;

EID: 79952228197     PISSN: 00084271     EISSN: 19181841     Source Type: Journal    
DOI: 10.4141/CJSS10008     Document Type: Review
Times cited : (61)

References (61)
  • 1
    • 84988148109 scopus 로고
    • The fractal dimension of the pore volume inside soils
    • Ahl, C. and Niemeyer, J. 1989. The fractal dimension of the pore volume inside soils. Z. Pflanzenernaehr. Bodenk. 152: 457-458.
    • (1989) Z. Pflanzenernaehr. Bodenk. , vol.152 , pp. 457-458
    • Ahl, C.1    Niemeyer, J.2
  • 2
    • 0032472261 scopus 로고    scopus 로고
    • Is the geometry of nature fractal?
    • Avnir, D., Biham, O., Lidar, D. and Malcai, O. 1998. Is the geometry of nature fractal? Science 279: 38-40.
    • (1998) Science , vol.279 , pp. 38-40
    • Avnir, D.1    Biham, O.2    Lidar, D.3    Malcai, O.4
  • 3
    • 77956185243 scopus 로고    scopus 로고
    • Introduction to fractal geometry, fragmentation processes and multifractal measures: Theory and operational aspects of their application to natural systems. Pages 11-67
    • N. Senesi and K. J. Wilkinson, eds., Chapter 2. John Wiley and Sons, Chichester, UK
    • Baveye, P.h., Boast, Ch. W., Gaspard, S., Tarquis, A. M. and Millá n, H. 2008. Introduction to fractal geometry, fragmentation processes and multifractal measures: theory and operational aspects of their application to natural systems. Pages 11-67 in N. Senesi and K. J. Wilkinson, eds. Biophysical chemistry of fractal structures and processes in environmental systems. Chapter 2. John Wiley and Sons, Chichester, UK.
    • (2008) Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems
    • Baveye, P.H.1    Boast, Ch.W.2    Gaspard, S.3    Tarquis, A.M.4    Millán, H.5
  • 4
    • 0030482971 scopus 로고    scopus 로고
    • Water retention models for fractal soil structures
    • Bird, N. R. A., Bartoli, F. and Dexter, A. R. 1996. Water retention models for fractal soil structures. Eur. J. Soil Sci. 47: 1-6.
    • (1996) Eur. J. Soil Sci. , vol.47 , pp. 1-6
    • Bird, N.R.A.1    Bartoli, F.2    Dexter, A.R.3
  • 6
    • 0034101402 scopus 로고    scopus 로고
    • The water retention function for a model of soil structure with pore and solid fractal distributions
    • DOI 10.1046/j.1365-2389.2000.00278.x
    • Bird, N. R. A., Perrier, E. and Rieu, M. 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. Eur. J. Soil Sci. 51: 55-63. (Pubitemid 30147346)
    • (2000) European Journal of Soil Science , vol.51 , Issue.1 , pp. 55-63
    • Bird, N.R.A.1    Perrier, E.2    Rieu, M.3
  • 8
    • 7244220036 scopus 로고
    • Relative permeability calculations from pore-size distribution data
    • Burdine, N. T. 1953. Relative permeability calculations from pore-size distribution data. Petr. Trans. Am. Inst. Minig Metall Eng. 198: 71-77.
    • (1953) Petr. Trans. Am. Inst. Minig Metall Eng. , vol.198 , pp. 71-77
    • Burdine, N.T.1
  • 9
    • 84934737612 scopus 로고
    • A simple method for determining unsaturated hydraulic conductivity from moisture retention data
    • Campbell, G. S. 1974. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Sci. 117: 311-314.
    • (1974) Soil Sci. , vol.117 , pp. 311-314
    • Campbell, G.S.1
  • 10
    • 36849085874 scopus 로고    scopus 로고
    • Water retention models for scale-variant and scale-invariant drainage of mass prefractal porous media
    • DOI 10.2136/vzj2007.0062
    • Cihan, A., Perfect, E. and Tyner, J. S. 2007. Water retention models for scale-variant and scale-invariant drainage of mass prefractal porous media. Vadose Zone J. 6: 786-792. (Pubitemid 350232073)
    • (2007) Vadose Zone Journal , vol.6 , Issue.4 , pp. 786-792
    • Cihan, A.1    Perfect, E.2    Tyner, J.S.3
  • 11
    • 0022287482 scopus 로고
    • Partial filling of a fractal structure by a wetting fluid
    • D. Adler, H. Fritzsche, and S. R. Ovshinsky, eds. Plenum, New York, NY
    • de Gennes, P. G. 1985. Partial filling of a fractal structure by a wetting fluid. Pages 227-241 in D. Adler, H. Fritzsche, and S. R. Ovshinsky, eds. Physics of disordered materials. Plenum, New York, NY.
    • (1985) Physics of Disordered Materials , pp. 227-241
    • De Gennes, P.G.1
  • 13
    • 40849114647 scopus 로고    scopus 로고
    • Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions
    • 021203
    • Deinert, M. R., Dathe, A., Parlange, J-Y. and Cady, K. B. 2008. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions. Phys. Rev. E. 77 (021203): 1-3
    • (2008) Phys. Rev. E. , vol.77 , pp. 1-3
    • Deinert, M.R.1    Dathe, A.2    Parlange, J.-Y.3    Cady, K.B.4
  • 14
    • 77954268505 scopus 로고    scopus 로고
    • Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry
    • Fallico, C., Tarquis, A. M., De Bartoloa, S. and Veltria, M. 2010. Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry. Eur. J. Soil Sci. 61: 4 25-436.
    • (2010) Eur. J. Soil Sci. , vol.61 , Issue.4 , pp. 25-436
    • Fallico, C.1    Tarquis, A.M.2    De Bartoloa, S.3    Veltria, M.4
  • 15
    • 0032958635 scopus 로고    scopus 로고
    • Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling
    • Filgueira, R. R., Pachepsky, Ya. A., Fournier, L. L., Sarli, G. O. and Aragon, A. 1999. Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling. Soil Sci. 164: 217-223. (Pubitemid 29212009)
    • (1999) Soil Science , vol.164 , Issue.4 , pp. 217-223
    • Filgueira, R.R.1    Pachepsky, Ya.A.2    Fournier, L.L.3    Sarli, G.O.4    Aragon, A.5
  • 16
    • 67349113402 scopus 로고    scopus 로고
    • The relationship between surface fractal dimension and soil water content at permanent wilting point
    • Ghanbarian-Alavijeh, B. and Millá n, H. 2009. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma 151: 224-232.
    • (2009) Geoderma , vol.151 , pp. 224-232
    • Ghanbarian-Alavijeh, B.1    Millán, H.2
  • 18
    • 0030609399 scopus 로고    scopus 로고
    • Prediction of the saturated hydraulic conductivityporosity dependence using fractals
    • Giménez, D., Allmaras, R. R., Huggins, D. R. and Nater, E. A. 1997a. Prediction of the saturated hydraulic conductivityporosity dependence using fractals. Soil Sci. Soc. Am. J. 61: 1285-1292.
    • (1997) Soil Sci. Soc. Am. J. , vol.61 , pp. 1285-1292
    • Giménez, D.1    Allmaras, R.R.2    Huggins, D.R.3    Nater, E.A.4
  • 19
    • 0031421370 scopus 로고    scopus 로고
    • Fractal models for predicting soil hydraulic properties: A review
    • Giménez, D., Perfect, E., Rawls, W. J. and Pachepsky, Ya. 1997b. Fractal models for predicting soil hydraulic properties: a review. Eng. Geol. 48: 161-183.
    • (1997) Eng. Geol. , vol.48 , pp. 161-183
    • Giménez, D.1    Perfect, E.2    Rawls, W.J.3    Pachepsky, Ya.4
  • 20
    • 20444371045 scopus 로고    scopus 로고
    • Evaluation of soil water retention curve with the pore-solid fractal model
    • DOI 10.1016/j.geoderma.2004.11.016, PII S001670610400299X
    • Huang, G. and Zhang, R. 2005. Evaluation of soil water retention curve with the pore-solid fractal approach. Geoderma 127: 52-61. (Pubitemid 40793528)
    • (2005) Geoderma , vol.127 , Issue.1-2 , pp. 52-61
    • Huang, G.1    Zhang, R.2
  • 22
    • 83455218521 scopus 로고    scopus 로고
    • Water-retention of fractal soil models using continuum percolation theory: Tests of hanford site soils
    • Hunt, A. G. and Gee, G. W. 2002. Water-retention of fractal soil models using continuum percolation theory: Tests of Hanford Site soils. Vadose Zone J. 1: 252-260.
    • (2002) Vadose Zone J. , vol.1 , pp. 252-260
    • Hunt, A.G.1    Gee, G.W.2
  • 23
    • 34547924988 scopus 로고    scopus 로고
    • Hydraulic conductivity limited equilibration: Effect on water retention characteristics
    • Hunt, A. G. and Skinner, T. E. 2005. Hydraulic conductivity limited equilibration: Effect on water retention characteristics. Vadose Zone J. 4: 14 5-150.
    • (2005) Vadose Zone J. , vol.4 , Issue.14 , pp. 5-150
    • Hunt, A.G.1    Skinner, T.E.2
  • 24
    • 0023159444 scopus 로고
    • A retentivity function for use in soil water simulation models
    • Hutson, J. L. and Cass, A. 1987. A retentivity function for use in soil water simulation models. Soil Sci. 38: 105-113.
    • (1987) Soil Sci. , vol.38 , pp. 105-113
    • Hutson, J.L.1    Cass, A.2
  • 26
    • 0031968910 scopus 로고    scopus 로고
    • Estimating the soil water retention from particle-size distributions: A fractal approach
    • Kravchenko, A. and Zhang, R. 1998. Estimating the soil water retention from particle-size distributions: a fractal approach. Soil Sci. 163: 171-179. (Pubitemid 28154062)
    • (1998) Soil Science , vol.163 , Issue.3 , pp. 171-179
    • Kravchenko, A.1    Zhang, R.2
  • 28
    • 0036151601 scopus 로고    scopus 로고
    • Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions
    • DOI 10.1016/S0167-1987(01)00249-5, PII S0167198701002495
    • Martin, M. A. and Montero, E. 2002. Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions. Soil Tillage Res. 64: 113-123. (Pubitemid 34108568)
    • (2002) Soil and Tillage Research , vol.64 , Issue.1-2 , pp. 113-123
    • Martin, M.A.1    Montero, E.2
  • 29
    • 67849122925 scopus 로고    scopus 로고
    • Regression and time series model selection
    • London, UK.
    • McQuarrie, A. D. R. and Tsai, C.-L. 1998. Regression and time series model selection. World Scientific, London, UK. 455 pp.
    • (1998) World Scientific
    • McQuarrie, A.D.R.1    Tsai, C.-L.2
  • 30
    • 11144328350 scopus 로고    scopus 로고
    • Modelling soil water retention scaling. Comparison of a classical fractal model with a piecewise approach
    • DOI 10.1016/j.geoderma.2004.06.003, PII S0016706104001740
    • Millán, H. and González-Posada, M. 2005. Modelling soil water retention scaling. Comparison of a classical fractal model with a piecewise approach. Geoderma 125: 25-38. (Pubitemid 40034019)
    • (2005) Geoderma , vol.125 , Issue.1-2 , pp. 25-38
    • Millan, H.1    Gonzalez-Posada, M.2
  • 31
    • 33744734385 scopus 로고    scopus 로고
    • A note on the physics of soil water retention through fractal parameters
    • DOI 10.1142/S0218348X06003131, PII S0218348X06003131
    • Millán, H., Aguilar, M., Domínguez, J., Céspedes, L., Velasco, E. and González, M. 2006. A note on the physics of soil water retention through fractal parameters. Fractals 14: 143-148. (Pubitemid 43823114)
    • (2006) Fractals , vol.14 , Issue.2 , pp. 143-148
    • Millan, H.1    Aguilar, M.2    Dominguez, J.3    Cespedes, L.4    Velasco, E.5    Gonzalez, M.6
  • 32
    • 0346816502 scopus 로고    scopus 로고
    • On the fractal scaling of soil data. Particle-size distributions
    • DOI 10.1016/S0016-7061(03)00138-1
    • Millán, H., González-Posada, M., Aguilar, M., Domínguez, J. and Céspedes, L. 2003. On the fractal scaling of soil data. Particle-size distributions. Geoderma 117: 117-128. (Pubitemid 37537774)
    • (2003) Geoderma , vol.117 , Issue.1-2 , pp. 117-128
    • Millan, H.1    Gonzalez-Posada, M.2    Aguilar, M.3    Dominguez, J.4    Cespedes, L.5
  • 33
    • 33746666587 scopus 로고    scopus 로고
    • Fractal analysis of soil water hysteresis as influenced by sewage sludge application
    • DOI 10.1016/j.geoderma.2006.03.011, PII S0016706106000620
    • Ojeda, M., Perfect, E., Alcaniz, J. M. and Ortiz, O. 2006. Fractal analysis of soil water hysteresis as influenced by sewage sludge application. Geoderma 134: 386-401. (Pubitemid 44160511)
    • (2006) Geoderma , vol.134 , Issue.3-4 , pp. 386-401
    • Ojeda, G.1    Perfect, E.2    Alcaniz, J.M.3    Ortiz, O.4
  • 34
    • 0028830377 scopus 로고
    • Scaling of soil water retention using a fractal model
    • Pachepsky, Y. A., Shcherbakov, R. A. and Korsunskaya, L. P. 1995. Scaling of soil water retention using a fractal model. Soil Sci. 195: 99-104.
    • (1995) Soil Sci. , vol.195 , pp. 99-104
    • Pachepsky, Y.A.1    Shcherbakov, R.A.2    Korsunskaya, L.P.3
  • 35
    • 0001351141 scopus 로고    scopus 로고
    • Use of soil penetration resistance and group method of data handling to improve soil water retention estimates
    • PII S0167198798001688
    • Pachepsky, Ya., Rawls, W., Gimené z, D. and Watt, J. P. C. 1998. Use of soil penetration resistance and group method of data handling to improve soil water retention estimates. Soil Tillage Res. 49: 117-126. (Pubitemid 128717207)
    • (1998) Soil and Tillage Research , vol.49 , Issue.1-2 , pp. 117-126
    • Pachepsky, Ya.1    Rawls, W.2    Gimenez, D.3    Watt, J.P.C.4
  • 37
    • 0032915052 scopus 로고    scopus 로고
    • Estimating soil mass fractal dimensions from water retention curves
    • DOI 10.1016/S0016-7061(98)00128-1, PII S0016706198001281
    • Perfect, E. 1999. Estimating mass fractal dimensions from water retention curves. Geoderma 88: 221-231. (Pubitemid 29114432)
    • (1999) Geoderma , vol.88 , Issue.3-4 , pp. 221-231
    • Perfect, E.1
  • 38
    • 33746369515 scopus 로고    scopus 로고
    • Modeling the primary drainage curve of prefractal porous media
    • Perfect, E. 2005. Modeling the primary drainage curve of prefractal porous media. Vadose Zone J. 4: 959-966.
    • (2005) Vadose Zone J. , vol.4 , pp. 959-966
    • Perfect, E.1
  • 39
    • 3142775063 scopus 로고    scopus 로고
    • Fractal analysis of soil water desorption data collected on disturbed samples with water activity meters
    • Perfect, E., Kenst, A. B., Díaz-Zorita, M. and Grove, J. H. 2004. Fractal analysis of soil water desorption data collected on disturbed samples with water activity meter. Soil Sci. Soc. Am. J. 68: 1177-1184. (Pubitemid 38927743)
    • (2004) Soil Science Society of America Journal , vol.68 , Issue.4 , pp. 1177-1184
    • Perfect, E.1    Kenst, A.B.2    Diaz-Zorita, M.3    Grove, J.H.4
  • 40
    • 0032914345 scopus 로고    scopus 로고
    • Generalizing the fractal model of soil structure: The pore-solid fractal approach
    • DOI 10.1016/S0016-7061(98)00102-5, PII S0016706198001025
    • Perrier, E., Bird, N. and Rieu, M. 1999. Generalizing a fractal model of soil structure: the pore-solid fractal approach. Geoderma 88: 137-164. (Pubitemid 29114428)
    • (1999) Geoderma , vol.88 , Issue.3-4 , pp. 137-164
    • Perrier, E.1    Bird, N.2    Rieu, M.3
  • 41
    • 0029660799 scopus 로고    scopus 로고
    • Models of the water retention curve for soils with a fractal pore size distribution
    • Perrier, E., Rieu, M., Sposito, G. and de Marsily, G. 1996. Models of the water retention curve for soils with a fractal pore size distribution. Water Resour. Res. 32: 3025-3031.
    • (1996) Water Resour. Res. , vol.32 , pp. 3025-3031
    • Perrier, E.1    Rieu, M.2    Sposito, G.3    De Marsily, G.4
  • 42
    • 0036151778 scopus 로고    scopus 로고
    • Modelling soil fragmentation: The pore solid fractal approach
    • DOI 10.1016/S0167-1987(01)00247-1, PII S0167198701002471
    • Perrier, E. M. A. and Bird, N. R. A. 2002. Modelling soil fragmentation: the pore solid fractal approach. Soil Tillage Res. 64: 91-99. (Pubitemid 34108566)
    • (2002) Soil and Tillage Research , vol.64 , Issue.1-2 , pp. 91-99
    • Perrier, E.M.A.1    Bird, N.R.A.2
  • 43
  • 44
    • 0026359888 scopus 로고
    • Fractal fragmentation, soil porosity, and soil water properties: I. Theory, II. Applications
    • Rieu, M. and Sposito, G. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. Theory, II. Applications. Soil Sci. Soc. Am. J. 55: 1231-1244.
    • (1991) Soil Sci. Soc. Am. J. , vol.55 , pp. 1231-1244
    • Rieu, M.1    Sposito, G.2
  • 45
    • 0002694734 scopus 로고    scopus 로고
    • Fractal models of fragmented and aggregated soils
    • P. Baveye et al., eds. CRC Press, Boca Raton, FL
    • Rieu, M. and Perrier, E. 1997. Fractal models of fragmented and aggregated soils. Pages 169-201 in P. Baveye et al., eds. Fractals in soil science. CRC Press, Boca Raton, FL.
    • (1997) Fractals in Soil Science , pp. 169-201
    • Rieu, M.1    Perrier, E.2
  • 46
    • 0026359766 scopus 로고
    • Equation for extending water-retention curves to dryness
    • Ross, P. J., Williams, J. and Bristow, K. L. 1991. Equation for extending water-retention curves to dryness. Soil Sci. Soc. Am. J. 55: 923-927.
    • (1991) Soil Sci. Soc. Am. J. , vol.55 , pp. 923-927
    • Ross, P.J.1    Williams, J.2    Bristow, K.L.3
  • 47
    • 0028333105 scopus 로고
    • Modeling of soil water retention from saturation to oven dryness
    • DOI 10.1029/93WR03238
    • Rossi, C. and Nimmo, J. R. 1994. Modeling of soil water retention from saturation to oven dryness. Water Resour. Res. 30: 701-708. (Pubitemid 24405763)
    • (1994) Water Resources Research , vol.30 , Issue.3 , pp. 701-708
    • Rossi, C.1    Nimmo, J.R.2
  • 48
    • 0027835264 scopus 로고
    • Using a fractal model to compute the hydraulic conductivity function
    • Shepard, S. J. 1993. Using a fractal model to compute the hydraulic conductivity function. Soil Sci. Soc. Am. J. 57: 300-306.
    • (1993) Soil Sci. Soc. Am. J. , vol.57 , pp. 300-306
    • Shepard, S.J.1
  • 49
    • 33947408646 scopus 로고    scopus 로고
    • Response to "comments on Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory"
    • Sposito, G. 2007. Response to "Comments on Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory". Soil Sci. Soc. Am. J. 71: 633.
    • (2007) Soil Sci. Soc. Am. J. , vol.71 , pp. 633
    • Sposito, G.1
  • 50
    • 73249137865 scopus 로고    scopus 로고
    • StatSoft, Inc. STATISTICA. Version 6.1, Tulsa, OK
    • StatSoft, Inc. 2003. STATISTICA. Data Analysis Software System. Version 6.1, Tulsa, OK .
    • (2003) Data Analysis Software System
  • 51
    • 84958952264 scopus 로고    scopus 로고
    • Scaling and multiscaling of soil pore systems determined by image analysis
    • Ya. Pachepsky, D. E. Radcliffe, and H. M. Selim, eds. Chapter 2. CRC Press, Boca Raton, FL
    • Tarquis, A. M., Giménez, D., Saa, A., Díaz, M. C. and Gascó, J. M. 2003. Scaling and multiscaling of soil pore systems determined by image analysis. Pages 19-33 in Ya. Pachepsky, D. E. Radcliffe, and H. M. Selim, eds. Scaling methods in soil physics. Chapter 2. CRC Press, Boca Raton, FL.
    • (2003) Scaling Methods in Soil Physics , pp. 19-33
    • Tarquis, A.M.1    Giménez, D.2    Saa, A.3    Díaz, M.C.4    Gascój., M.5
  • 53
    • 0004029779 scopus 로고    scopus 로고
    • The MathWorks Inc. MATLAB: Version 7.3. Natick, MA
    • The MathWorks Inc., 2006. MATLAB: The language of technical computing. Version 7.3. Natick, MA .
    • (2006) The Language of Technical Computing
  • 55
    • 0024813234 scopus 로고
    • Application of fractal mathematics to soil water retention estimation
    • Tyler, S. W. and Wheatcraft, S. W. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53: 987-996. (Pubitemid 20399880)
    • (1989) Soil Science Society of America Journal , vol.53 , Issue.4 , pp. 987-996
    • Tyler, S.W.1    Wheatcraft, S.W.2
  • 56
    • 0025590135 scopus 로고
    • Fractal processes in soil water retention
    • Tyler, S. W. and Wheatcraft, S. W. 1990. Fractal processes in soil water retention. Water Resour. Res. 26: 1047-1054.
    • (1990) Water Resour. Res. , vol.26 , pp. 1047-1054
    • Tyler, S.W.1    Wheatcraft, S.W.2
  • 57
    • 0019057216 scopus 로고
    • A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
    • van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44: 892-898.
    • (1980) Soil Sci. Soc. Am. J. , vol.44 , pp. 892-898
    • Van Genuchten, M.Th.1
  • 58
    • 0024873590 scopus 로고
    • Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content
    • Vereecken, H., Feyen, J., Maes, J. and Darius, P. 1989. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148: 389-403. (Pubitemid 20404916)
    • (1989) Soil Science , vol.148 , Issue.6 , pp. 389-403
    • Vereecken, H.1    Maes, J.2    Feyen, J.3    Darius, P.4
  • 59
    • 18644384216 scopus 로고    scopus 로고
    • Testing the pore-solid fractal model for the soil water retention function
    • Wang, K., Zhang, R. and Wang, F. 2005. Testing the pore-solid fractal model for the soil water retention function. Soil Sci. Soc. Am. J. 69: 776-782.
    • (2005) Soil Sci. Soc. Am. J. , vol.69 , pp. 776-782
    • Wang, K.1    Zhang, R.2    Wang, F.3
  • 60
    • 0344731425 scopus 로고    scopus 로고
    • Development and use of a database of hydraulic properties of European soils
    • DOI 10.1016/S0016-7061(98)00132-3, PII S0016706198001323
    • Wösten, J. H. M., Lilly, A., Nemes, A. and Le Bas, C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90: 169-185. (Pubitemid 29350902)
    • (1999) Geoderma , vol.90 , Issue.3-4 , pp. 169-185
    • Wosten, J.H.M.1    Lilly, A.2    Nemes, A.3    Le Bas, C.4
  • 61
    • 11344274470 scopus 로고    scopus 로고
    • Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution
    • DOI 10.1016/j.compgeo.2004.07.003, PII S0266352X04000990
    • Xu, Y. 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution. Computers and Geotechnics 31: 549-557 (Pubitemid 40077480)
    • (2004) Computers and Geotechnics , vol.31 , Issue.7 , pp. 549-557
    • Xu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.