메뉴 건너뛰기




Volumn 393, Issue 2, 2012, Pages 341-347

Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations

Author keywords

Erd lyi Kober operators; Fractional differential equations; Lie symmetry analysis; Riemann Liouville fractional derivative

Indexed keywords


EID: 84860915405     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2012.04.006     Document Type: Article
Times cited : (231)

References (30)
  • 3
    • 36749114221 scopus 로고
    • Lie transformations, nonlinear evolution equations and Painlevé forms
    • Lakshmanan M., Kaliappan P. Lie transformations, nonlinear evolution equations and Painlevé forms. J. Math. Phys. 1983, 24:795.
    • (1983) J. Math. Phys. , vol.24 , pp. 795
    • Lakshmanan, M.1    Kaliappan, P.2
  • 6
    • 0002279696 scopus 로고
    • Lie groups and solutions of nonlinear partial differential equations
    • CRM-1841, Canada
    • P. Winternitz, Lie groups and solutions of nonlinear partial differential equations, in: Lecture Notes in Physics, CRM-1841, Canada, 1993.
    • (1993) Lecture Notes in Physics
    • Winternitz, P.1
  • 7
    • 0023542072 scopus 로고
    • Symmetries and integrability
    • Fokas A.S. Symmetries and integrability. Stud. Appl. Math. 1987, 77:253.
    • (1987) Stud. Appl. Math. , vol.77 , pp. 253
    • Fokas, A.S.1
  • 8
    • 0039767862 scopus 로고
    • The symmetry approach to classification of integrable equation, in: What is Integrability?
    • Springer Series on Nonlinear Dynamics, Berlin.
    • A.B. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to classification of integrable equation, in: What is Integrability?, Springer Series on Nonlinear Dynamics, Berlin, 1991, pp. 115-184.
    • (1991) , pp. 115-184
    • Mikhailov, A.B.1    Shabat, A.B.2    Sokolov, V.V.3
  • 9
    • 0000284251 scopus 로고
    • Continuous symmetries of discrete equations
    • Levi D., Winternitz P. Continuous symmetries of discrete equations. Phys. Lett. A 1991, A152:335-340.
    • (1991) Phys. Lett. A , vol.152 A , pp. 335-340
    • Levi, D.1    Winternitz, P.2
  • 10
    • 0001156359 scopus 로고
    • Canonical structure and symmetries for discrete systems
    • Maeda S. Canonical structure and symmetries for discrete systems. Math. Japon. 1980, 25:405-420.
    • (1980) Math. Japon. , vol.25 , pp. 405-420
    • Maeda, S.1
  • 11
    • 41549098736 scopus 로고    scopus 로고
    • Bilinear, trilinear forms and exact solution of certain fourth order integrable difference equations
    • Sahadevan R., Rajakumar S. Bilinear, trilinear forms and exact solution of certain fourth order integrable difference equations. J. Math. Phys. 2008, 49:033517.
    • (2008) J. Math. Phys. , vol.49 , pp. 033517
    • Sahadevan, R.1    Rajakumar, S.2
  • 13
    • 33847309315 scopus 로고    scopus 로고
    • Theory and Applications of Fractional Differential Equations
    • Amsterdam, The Netherlands
    • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, The Netherlands, 2006.
    • (2006)
    • Kilbas, A.A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 16
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • Meerschaert M.M., Scheffler H.P., Tadjeran C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 2006, 211:249-261.
    • (2006) J. Comput. Phys. , vol.211 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 17
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time fractional Navier-Stokes equation by Adomian decomposition method
    • Momani S., Odibat Z. Analytical solution of a time fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177:488-494.
    • (2006) Appl. Math. Comput. , vol.177 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 18
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167:57-68.
    • (1998) Comput. Methods Appl. Mech. Eng. , vol.167 , pp. 57-68
    • He, J.H.1
  • 19
    • 34247395044 scopus 로고    scopus 로고
    • Homotopy perturbation method for nonlinear partial differential equations of fractional order
    • Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
    • (2007) Phys. Lett. A , vol.365 , pp. 345-350
    • Momani, S.1    Odibat, Z.2
  • 20
    • 0020765202 scopus 로고
    • A theoretical basis for the application of fractional calculus to visco-elasticity
    • Bagley R., Torvik P. A theoretical basis for the application of fractional calculus to visco-elasticity. J. Rheol. 1983, 27(3):201-210.
    • (1983) J. Rheol. , vol.27 , Issue.3 , pp. 201-210
    • Bagley, R.1    Torvik, P.2
  • 21
    • 36549063424 scopus 로고    scopus 로고
    • Generalised differential transform method for linear partial differential equations of fractional order
    • Momani S., Odibat Z. Generalised differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 2008, 21(2):194-199.
    • (2008) Appl. Math. Lett. , vol.21 , Issue.2 , pp. 194-199
    • Momani, S.1    Odibat, Z.2
  • 22
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution for differential equation of fractional order
    • Diethelm K. An algorithm for the numerical solution for differential equation of fractional order. Electron. Trans. Numer. Anal. 1997, 5:1-6.
    • (1997) Electron. Trans. Numer. Anal. , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 23
    • 0036554885 scopus 로고    scopus 로고
    • A numerical scheme for dynamic systems containing fractional derivatives
    • Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. 2002, 124:321-324.
    • (2002) J. Vib. Acoust. , vol.124 , pp. 321-324
    • Yuan, L.1    Agrawal, O.P.2
  • 24
    • 77952827513 scopus 로고    scopus 로고
    • Continuous transformation groups of fractional differential equations
    • (in Russian)
    • Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. Continuous transformation groups of fractional differential equations. Vestnik, USATU 2007, 9:125-135. (in Russian).
    • (2007) Vestnik, USATU , vol.9 , pp. 125-135
    • Gazizov, R.K.1    Kasatkin, A.A.2    Lukashchuk, S.3
  • 25
    • 77952856621 scopus 로고    scopus 로고
    • Symmetry properties of fractional diffusion equations
    • Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, T136:014016.
    • (2009) Phys. Scr. , vol.136 T , pp. 014016
    • Gazizov, R.K.1    Kasatkin, A.A.2    Lukashchuk, S.3
  • 26
    • 0039835768 scopus 로고    scopus 로고
    • Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations
    • Buckwar E., Luchko Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227:81-97.
    • (1998) J. Math. Anal. Appl. , vol.227 , pp. 81-97
    • Buckwar, E.1    Luchko, Y.2
  • 27
    • 53549087275 scopus 로고    scopus 로고
    • Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations
    • Djordjevic V.D., Atanackovic T.M. Similarity solutions to nonlinear heat conduction and Burgers/Korteweg-deVries fractional equations. J. Comput. Appl. Math. 2008, 212:701-714.
    • (2008) J. Comput. Appl. Math. , vol.212 , pp. 701-714
    • Djordjevic, V.D.1    Atanackovic, T.M.2
  • 30
    • 0003223705 scopus 로고
    • Generalised Fractional Calculus and Applications
    • Kiryakova V. Generalised Fractional Calculus and Applications. Pitman Res. Notes in Math. 1994, vol. 301.
    • (1994) Pitman Res. Notes in Math. , vol.301
    • Kiryakova, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.