메뉴 건너뛰기




Volumn 20, Issue 7, 2012, Pages 1923-1935

Multi-view and multi-objective semi-supervised learning for HMM-based automatic speech recognition

Author keywords

Acoustic modeling; automatic speech recognition; multi objective learning; multi view committee machine; semi supervised learning (SSL)

Indexed keywords

ACOUSTIC MODELING; AUTOMATIC SPEECH RECOGNITION; COMMITTEE MACHINES; MULTI OBJECTIVE; SEMI-SUPERVISED LEARNING;

EID: 84860878023     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASL.2012.2191955     Document Type: Conference Paper
Times cited : (30)

References (45)
  • 3
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • N. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, "Text classification from labeled and unlabeled documents using EM," Mach. Learn., vol. 39, pp. 103-134, 2000. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Statist. Soc. Ser. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. R. Statist. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 5
    • 0347380864 scopus 로고    scopus 로고
    • Exploitation of unlabeled sequences in hidden Markov models
    • Dec.
    • M. Inoue and N. Ueda, "Exploitation of unlabeled sequences in hidden Markov models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1570-1581, Dec. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.12 , pp. 1570-1581
    • Inoue, M.1    Ueda, N.2
  • 6
    • 62249193672 scopus 로고    scopus 로고
    • Semi-supervised learning of hidden Markov models via a homotopy method
    • Feb.
    • S. Ji, L. T. Watson, and L. Carin, "Semi-supervised learning of hidden Markov models via a homotopy method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 275-287, Feb. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.2 , pp. 275-287
    • Ji, S.1    Watson, L.T.2    Carin, L.3
  • 7
    • 33750699291 scopus 로고    scopus 로고
    • Multi-conditional learning: Generative/discriminative training for clustering and classification
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • A. McCallum, C. Pal, G. Druck, and X. Wang, "Multiconditional learning: Generative/discriminative training for clustering and classification," in Proc. AAAI Nat. Conf. Artif. Intell., 2006, pp. 433-439. (Pubitemid 44705322)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 433-439
    • McCallum, A.1    Pal, C.2    Druck, G.3    Wang, X.4
  • 10
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • DOI 10.1109/TKDE.2005.186
    • Z.-H. Zhou and M. Li, "Tri-training: Exploiting unlabeled data using three classifiers," IEEE Trans. Knowl. Data Eng., vol. 37, no. 11, pp. 1529-1541, Nov. 2005. (Pubitemid 41704840)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 11
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang, "A framework for learning predictive structures from multiple tasks and unlabeled data," J. Mach. Learn. Res., vol. 36, pp. 1817-1853, 2005.
    • (2005) J. Mach. Learn. Res. , vol.36 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 12
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 13
    • 18744376902 scopus 로고    scopus 로고
    • Predictive hidden Markov model selection for speech recognition
    • DOI 10.1109/TSA.2005.845810
    • J.-T. Chien and S. Furui, "Predictive hidden Markov model selection for speech recognition," IEEE Trans. Speech Audio Process., vol. 13, no. 3, pp. 377-387, May 2005. (Pubitemid 40666172)
    • (2005) IEEE Transactions on Speech and Audio Processing , vol.13 , Issue.3 , pp. 377-387
    • Chien, J.-T.1    Furui, S.2
  • 15
    • 84898928156 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Cambridge, MA: MIT Press
    • Y. Grandvalet and Y. Bengio, "Semi-supervised learning by entropy minimization," in Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press, 2005, pp. 529-536.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 16
  • 17
    • 0033882107 scopus 로고    scopus 로고
    • Unsupervised hierarchical adaptation using reliable selection of cluster-dependent parameters
    • DOI 10.1016/S0167-6393(99)00052-7
    • J.-T. Chien and J.-C. Junqua, "Unsupervised hierarchical adaptatoin using reliable selection of cluster-dependent parameters," Speech Commun., vol. 30, no. 4, pp. 235-253, 2000. (Pubitemid 30557792)
    • (2000) Speech Communication , vol.30 , Issue.4 , pp. 235-253
    • Chien, J.-T.1    Junqua, J.-C.2
  • 18
    • 11144239919 scopus 로고    scopus 로고
    • Unsupervised training of acoustic models for large vocabulary continuous speech recognition
    • DOI 10.1109/TSA.2004.838537
    • F. Wessel and H. Ney, "Unsupervised training of acoustic models for large vocabulary continuous speech recognition," IEEE Trans. Speech Audio Process., vol. 13, no. 1, pp. 23-31, Jan. 2005. (Pubitemid 40049937)
    • (2005) IEEE Transactions on Speech and Audio Processing , vol.13 , Issue.1 , pp. 23-31
    • Wessel, F.1    Ney, H.2
  • 20
    • 0036460908 scopus 로고    scopus 로고
    • Lightly supervised and unsupervised acoustic model training
    • L. Lamel, J.-L. Gauvain, and G. Adda, "Lightly supervised and unsupervised acoustic model training," Comput. Speech Lang., vol. 16, pp. 115-129, 2002.
    • (2002) Comput. Speech Lang. , vol.16 , pp. 115-129
    • Lamel, L.1    Gauvain, J.-L.2    Adda, G.3
  • 25
    • 70349216566 scopus 로고    scopus 로고
    • Co-adaptation: Adaptive co-training for semisupervised learning
    • G. Tur, "Co-adaptation: Adaptive co-training for semisupervised learning," in Proc. Int. Conf. Acoust., Speech, Signal Process., 2009, pp. 3721-3724.
    • (2009) Proc. Int. Conf. Acoust., Speech, Signal Process. , pp. 3721-3724
    • Tur, G.1
  • 26
    • 85008565008 scopus 로고    scopus 로고
    • Multi-view semi-supervised learning for dialog act segmentation of speech
    • Feb.
    • U. Guz, S. Cuendet, D. Hakkani-Tur, and G. Tur, "Multi-view semi-supervised learning for dialog act segmentation of speech," IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 2, pp. 320-329, Feb. 2010.
    • (2010) IEEE Trans. Audio, Speech, Lang. Process. , vol.18 , Issue.2 , pp. 320-329
    • Guz, U.1    Cuendet, S.2    Hakkani-Tur, D.3    Tur, G.4
  • 27
    • 13544261390 scopus 로고    scopus 로고
    • Combining active and semi-supervised learning for spoken language understanding
    • DOI 10.1016/j.specom.2004.08.002, PII S0167639304000962
    • G. Tur, D. Hakkani-Tur, and R. E. Schapire, "Combining active and semi-supervised learning for spoken language understanding," Speech Commun., no. 45, pp. 171-186, 2005. (Pubitemid 40220192)
    • (2005) Speech Communication , vol.45 , Issue.2 , pp. 171-186
    • Tur, G.1    Hakkani-Tur, D.2    Schapire, R.E.3
  • 28
    • 77950063604 scopus 로고    scopus 로고
    • Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
    • D. Yu, B. Varadarajan, L. Deng, and A. Acero, "Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion," Comput. Speech Lang., no. 24, pp. 433-444, 2010.
    • Comput. Speech Lang. , vol.2010 , Issue.24 , pp. 433-444
    • Yu, D.1    Varadarajan, B.2    Deng, L.3    Acero, A.4
  • 31
    • 64849106173 scopus 로고    scopus 로고
    • A flexible classifier design framework based on multiobjective programming
    • May
    • S. Yaman and C.-H. Lee, "A flexible classifier design framework based on multiobjective programming," IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 4, pp. 779-789, May 2008.
    • (2008) IEEE Trans. Audio, Speech, Lang. Process. , vol.16 , Issue.4 , pp. 779-789
    • Yaman, S.1    Lee, C.-H.2
  • 32
    • 80051662554 scopus 로고    scopus 로고
    • Multi-view and multiobjective semi-supervised learning for large vocabulary continuous speech recognition
    • X. Cui, J. Huang, and J.-T. Chien, "Multi-view and multiobjective semi-supervised learning for large vocabulary continuous speech recognition," in Proc. Int. Conf. Acoust., Speech, Signal Process., 2011, pp. 4668-4671.
    • (2011) Proc. Int. Conf. Acoust., Speech, Signal Process. , pp. 4668-4671
    • Cui, X.1    Huang, J.2    Chien, J.-T.3
  • 33
    • 70450191324 scopus 로고    scopus 로고
    • A study of bootstrapping with multiple acoustic features for improved automatic speech recognition
    • X. Cui, J. Xue, B. Xiang, and B. Zhou, "A study of bootstrapping with multiple acoustic features for improved automatic speech recognition," in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2009, pp. 240-243.
    • (2009) Proc. Annu. Conf. Int. Speech Commun. Assoc. , pp. 240-243
    • Cui, X.1    Xue, J.2    Xiang, B.3    Zhou, B.4
  • 35
    • 0030638031 scopus 로고    scopus 로고
    • A post-processing system to yield reduced word error rates: Recognizer Output Voting Error Reduction (ROVER)
    • Understand.
    • J. Fiscus, "A post-processing system to yield reduced word error rates: Recognizer Output Voting Error Reduction (ROVER)," in Proc. IEEE Workshop Autom. Speech Recognit. Understand., 1997, pp. 347-354.
    • (1997) Proc. IEEE Workshop Autom. Speech Recognit. , pp. 347-354
    • Fiscus, J.1
  • 37
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling," in Proc. Int. Conf. Acoust., Speech, Signal Process., 2009, pp. 3761-3764.
    • (2009) Proc. Int. Conf. Acoust., Speech, Signal Process. , pp. 3761-3764
    • Kingsbury, B.1
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. Berger, S. D. Pietra, and V. D. Pietra, "A maximum entropy approach to natural language processing," Comput. Linguist., vol. 22, no. 1, pp. 39-71, 1996.
    • (1996) Comput. Linguist. , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.1    Pietra, S.D.2    Pietra, V.D.3
  • 42
  • 45
    • 84864038630 scopus 로고    scopus 로고
    • Large margin hidden Markov models for automatic speech recognition
    • Cambridge, MA: MIT Press
    • F. Sha and L. K. Saul, "Large margin hidden Markov models for automatic speech recognition," in Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007, pp. 1249-1256.
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1249-1256
    • Sha, F.1    Saul, L.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.