메뉴 건너뛰기




Volumn 6, Issue 4, 2011, Pages 665-690

Bayesian outlier detection with dirichlet process mixtures

Author keywords

Bayes factor; Optimization; Partition

Indexed keywords


EID: 84860856946     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/11-BA625     Document Type: Article
Times cited : (30)

References (53)
  • 1
    • 65249156447 scopus 로고    scopus 로고
    • An Effective Clustering-Based Approach for Outlier Detection
    • Al-Zoubi, M. (2009). "An Effective Clustering-Based Approach for Outlier Detection." European Journal of Scientific Research, 28: 310-316.
    • (2009) European Journal of Scientific Research , vol.28 , pp. 310-316
    • Al-Zoubi, M.1
  • 2
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems
    • Antoniak, C. E. (1974). "Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems." The Annals of Statistics, 2: 1152-1174.
    • (1974) The Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 7
    • 84981748011 scopus 로고
    • Wiley series in probability and mathematical statistics: Probability and mathematical statistics. Wiley
    • Bernardo, J. and Smith, A. (1994). Bayesian theory. Wiley series in probability and mathematical statistics: Probability and mathematical statistics. Wiley.
    • (1994) Bayesian theory
    • Bernardo, J.1    Smith, A.2
  • 8
    • 0002617436 scopus 로고
    • Ferguson Distributions Via Polya Urn Schemes
    • Blackwell, D. and MacQueen, J. B. (1973). "Ferguson Distributions Via Polya Urn Schemes." The Annals of Statistics, 1(2): 353-355.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 353-355
    • Blackwell, D.1    MacQueen, J.B.2
  • 9
    • 84867186048 scopus 로고    scopus 로고
    • Variational Inference for Dirichlet Process Mixtures
    • Blei, D. and Jordan, M. (2006). "Variational Inference for Dirichlet Process Mixtures." Bayesian Analysis, 1(1): 121-144.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 10
    • 0014257478 scopus 로고
    • A Bayesian Approach to Some Outlier Problems
    • Box, G. E. P. and Tiao, G. C. (1968). "A Bayesian Approach to Some Outlier Problems." Biometrika, 55: 119-129.
    • (1968) Biometrika , vol.55 , pp. 119-129
    • Box, G.E.P.1    Tiao, G.C.2
  • 12
    • 0000904732 scopus 로고    scopus 로고
    • A Semiparametric Bayesian Model for Randomised Block Designs
    • Bush, C. A. and MacEachern, S. N. (1996). "A Semiparametric Bayesian Model for Randomised Block Designs." Biometrika, 83: 275-285.
    • (1996) Biometrika , vol.83 , pp. 275-285
    • Bush, C.A.1    MacEachern, S.N.2
  • 13
    • 77958055765 scopus 로고    scopus 로고
    • Modal Clustering in a Class of Product Partition Models
    • Dahl, D. B. (2009). "Modal Clustering in a Class of Product Partition Models." Bayesian Analysis, 4: 243-264.
    • (2009) Bayesian Analysis , vol.4 , pp. 243-264
    • Dahl, D.B.1
  • 14
    • 23044480850 scopus 로고    scopus 로고
    • Scales of Evidence for Model Selection: Fisher versus Jeffreys
    • Lahiri, P. (ed.), Institute of Mathematical Statistics, Beachwood, OH
    • Efron, B. and Gous, A. (2001). "Scales of Evidence for Model Selection: Fisher versus Jeffreys." In Lahiri, P. (ed.), Model Selection: Lecture Notes-Monograph Series, volume 38, 208-246. Institute of Mathematical Statistics, Beachwood, OH.
    • (2001) Model Selection: Lecture Notes-Monograph Series , vol.38 , pp. 208-246
    • Efron, B.1    Gous, A.2
  • 15
  • 17
    • 0001120413 scopus 로고
    • A Bayesian Analysis of Some Nonparametric Problems
    • Ferguson, T. S. (1973). "A Bayesian Analysis of Some Nonparametric Problems." The Annals of Statistics, 1(2): 209-230.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.S.1
  • 18
    • 0035998835 scopus 로고    scopus 로고
    • Model-Based Clustering, Descriminant Analysis, and Density Estimation
    • Fraley, C. and Raftery, A. E. (2002). "Model-Based Clustering, Descriminant Analysis, and Density Estimation." Journal of the American Statistical Association, 97: 611- 631.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 19
    • 0001135784 scopus 로고
    • Discussion of 'Sampling and Bayes Inference in Scientific Modeling and Robustness', by G.E.P. Box
    • Geisser, S. (1980). "Discussion of 'Sampling and Bayes Inference in Scientific Modeling and Robustness', by G.E.P. Box." Journal of the Royal Statistical Society, Ser. A, 143: 416-417.
    • (1980) Journal of the Royal Statistical Society, Ser. A , vol.143 , pp. 416-417
    • Geisser, S.1
  • 20
    • 0035531242 scopus 로고    scopus 로고
    • Modelling Heterogeneity With and Without the Dirichlet Process
    • Green, P. J. and Richardson, S. (2001). "Modelling Heterogeneity With and Without the Dirichlet Process." Scandinavian Journal of Statistics, 28: 355-375.
    • (2001) Scandinavian Journal of Statistics , vol.28 , pp. 355-375
    • Green, P.J.1    Richardson, S.2
  • 23
    • 33645507298 scopus 로고    scopus 로고
    • A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves
    • Heard, N. A., Holmes, C. C., and Stephens, D. A. (2006). "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves." Journal of the American Statistical Association, 101(473): 18-28.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.473 , pp. 18-28
    • Heard, N.A.1    Holmes, C.C.2    Stephens, D.A.3
  • 25
    • 0030194062 scopus 로고    scopus 로고
    • A method for simultaneous vari-able selection and outlier identification in linear regression
    • Hoeting, J., Raftery, A. E., and Madigan, D. (1996). "A method for simultaneous vari-able selection and outlier identification in linear regression." Computational Statistics & Data Analysis, 22(3): 251 - 270.
    • (1996) Computational Statistics & Data Analysis , vol.22 , Issue.3 , pp. 251-270
    • Hoeting, J.1    Raftery, A.E.2    Madigan, D.3
  • 28
    • 1842486852 scopus 로고    scopus 로고
    • A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model
    • Jain, S. and Neal, R. M. (2004). "A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model." Journal of Computational and Graphical Statistics, 13(1): 158-182.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.1 , pp. 158-182
    • Jain, S.1    Neal, R.M.2
  • 29
    • 44649182304 scopus 로고    scopus 로고
    • Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model
    • Jain, S. (2007). "Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model." Bayesian Analysis, 2(3): 445-472.
    • (2007) Bayesian Analysis , vol.2 , Issue.3 , pp. 445-472
    • Jain, S.1
  • 30
    • 0003414592 scopus 로고
    • Oxford, UK: Oxford University Press, 3 edition
    • Jeffreys, H. (1961). Theory of Probability. Oxford, UK: Oxford University Press, 3 edition.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 32
    • 26444479778 scopus 로고
    • Optimization by Simulated Annealing
    • Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). "Optimization by Simulated Annealing." Science, 220: 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 34
    • 0027543777 scopus 로고
    • Simple Approaches to Parallel Branch and Bound
    • Laursen, P. S. (1993). "Simple Approaches to Parallel Branch and Bound." Parallel Computing, 19: 143-152.
    • (1993) Parallel Computing , vol.19 , pp. 143-152
    • Laursen, P.S.1
  • 35
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of Time-course Gene Expression Data Using a Mixed-effects Model with B-splines
    • Luan, Y. and Li, H. (2003). "Clustering of Time-course Gene Expression Data Using a Mixed-effects Model with B-splines." Bioinformatics, 19: 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 36
    • 84972808999 scopus 로고
    • Estimating Normal Means with a Conjugate Style Dirichlet Process Prior
    • MacEachern, S. N. (1994). "Estimating Normal Means with a Conjugate Style Dirichlet Process Prior." Communications in Statistics B, 23: 727-741.
    • (1994) Communications in Statistics B , vol.23 , pp. 727-741
    • MacEachern, S.N.1
  • 37
    • 0033466420 scopus 로고    scopus 로고
    • Sequential Importance Sam-pling for Nonparametric Bayes Models: The Next Generation
    • MacEachern, S. N., Clyde, M., and Liu, J. S. (1999). "Sequential Importance Sam-pling for Nonparametric Bayes Models: The Next Generation." Canadian Journal of Statistics, 27: 251-267.
    • (1999) Canadian Journal of Statistics , vol.27 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 38
    • 79951995636 scopus 로고    scopus 로고
    • Parametric and semiparametric hypotheses in the linear model
    • MacEachern, S. N. and Guha, S. (2011). "Parametric and semiparametric hypotheses in the linear model." The Canadian Journal of Statistics, 39: 165-180.
    • (2011) The Canadian Journal of Statistics , vol.39 , pp. 165-180
    • MacEachern, S.N.1    Guha, S.2
  • 40
    • 59349118279 scopus 로고    scopus 로고
    • On a Nonparametric Recursive Estimator of the Mixing Dis-tribution. Sankhyā
    • Newton, M. A. (2002). "On a Nonparametric Recursive Estimator of the Mixing Dis-tribution." Sankhyā, Series A, 64: 306-322.
    • (2002) Series A , vol.64 , pp. 306-322
    • Newton, M.A.1
  • 41
    • 33747890494 scopus 로고    scopus 로고
    • A Mixture Model with Random-effects Components for Clustering Correlated Gene-expression Profiles
    • Ng, S., McLachlan, G., Wang, K., Ben-Tovim Jones, L., and Ng, S. (2006). "A Mixture Model with Random-effects Components for Clustering Correlated Gene-expression Profiles." Bioinformatics, 22: 1745-1752.
    • (2006) Bioinformatics , vol.22 , pp. 1745-1752
    • Ng, S.1    McLachlan, G.2    Wang, K.3    Ben-Tovim Jones, L.4    Ng, S.5
  • 42
    • 0001409882 scopus 로고
    • Bayes Factors for Outlier Models using the Device of Imaginary Observations
    • Petit, L. I. (1992). "Bayes Factors for Outlier Models using the Device of Imaginary Observations." Journal of the American Statistical Association, 87: 541-545.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 541-545
    • Petit, L.I.1
  • 44
    • 0037768643 scopus 로고    scopus 로고
    • Bayesian Clustering and Product Partition Models, Journal of the Royal Statistical Society
    • Quintana, F. A. and Iglesias, P. L. (2003). "Bayesian Clustering and Product Partition Models." Journal of the Royal Statistical Society, Series B, 65: 557-574.
    • (2003) Series B , vol.65 , pp. 557-574
    • Quintana, F.A.1    Iglesias, P.L.2
  • 45
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
    • R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.org/
    • (2011) R: A Language and Environment for Statistical Computing
  • 46
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • Rand, W. M. (1971). "Objective Criteria for the Evaluation of Clustering Methods." Journal of the American Statistical Association, 66: 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 48
    • 0000819568 scopus 로고
    • The Number of Partitions of a Set
    • Rota, G. (1964). "The Number of Partitions of a Set." The American Mathematical Monthly, 71: 498-504.
    • (1964) The American Mathematical Monthly , vol.71 , pp. 498-504
    • Rota, G.1
  • 51
    • 84944178665 scopus 로고
    • Hierarchical Grouping to Optimize an Objective Function
    • Ward, J. H. (1963). "Hierarchical Grouping to Optimize an Objective Function." Jour-nal of the American Statistical Association, 58(301): 236-244.
    • (1963) Jour-nal of the American Statistical Association , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 52
    • 63849083864 scopus 로고    scopus 로고
    • The Future of Statistical Computing
    • Wilkinson, L. (2008). "The Future of Statistical Computing." Technometrics, 50(4): 418-435.
    • (2008) Technometrics , vol.50 , Issue.4 , pp. 418-435
    • Wilkinson, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.