메뉴 건너뛰기




Volumn 28, Issue 2, 2009, Pages 310-316

An effective clustering-based approach for outlier detection

Author keywords

Clustering; Clustering based outliers; Data mining; Outlier detection

Indexed keywords


EID: 65249156447     PISSN: 1450216X     EISSN: 1450202X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (53)

References (33)
  • 2
    • 0042421807 scopus 로고    scopus 로고
    • Statistical Fraud Detection: A Review
    • Bolton, R. and D. J. Hand, Statistical Fraud Detection: A Review, 2002. Statistical Science, 17(3): 235-255.
    • (2002) Statistical Science , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.1    Hand, D.J.2
  • 3
  • 4
    • 84879085576 scopus 로고    scopus 로고
    • 7th International Database Engineering and Application Symposium (IDEAS03)
    • Chiu, A. and A. Fu, 2003. Enhancement on Local Outlier Detection. 7th International Database Engineering and Application Symposium (IDEAS03), pp. 298-307.
    • (2003) Enhancement on Local Outlier Detection , pp. 298-307
    • Chiu, A.1    Fu, A.2
  • 5
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for Mining Distance-based Outliers in Large Data Sets
    • Proc. the 24th International Conference on Very Large Databases (VLDB)
    • th International Conference on Very Large Databases (VLDB), pp. 392-403.
    • (1998) , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 6
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based Outliers: Algorithms and Applications
    • Knorr, E., R. Ng, and V. Tucakov, 2000. Distance-based Outliers: Algorithms and Applications. VLDB Journal, 8(3-4): 237-253.
    • (2000) VLDB Journal , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.1    Ng, R.2    Tucakov, V.3
  • 7
    • 7544223741 scopus 로고    scopus 로고
    • A Survey of Outlier Detection Methodologies
    • Hodge, V. and J. Austin, 2004. A Survey of Outlier Detection Methodologies, Artificial Intelligence Review, 22: 85-126.
    • (2004) Artificial Intelligence Review , vol.22 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 9
    • 71049116819 scopus 로고    scopus 로고
    • Outlier Detection using Clustering Methods: A Data Cleaning Application
    • in Proceedings of KDNet Symposium on Knowledge-based Systems for the Public Sector. Bonn, Germany
    • Loureiro, A., L. Torgo and C. Soares, 2004. Outlier Detection using Clustering Methods: a Data Cleaning Application, in Proceedings of KDNet Symposium on Knowledge-based Systems for the Public Sector. Bonn, Germany.
    • (2004)
    • Loureiro, A.1    Torgo, L.2    Soares, C.3
  • 12
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen, J.,1967. Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. Math. Stat. and Prob, pp. 281-97.
    • (1967) Proc. 5th Berkeley Symp. Math. Stat. and Prob , pp. 281-297
    • MacQueen, J.1
  • 15
    • 0037172724 scopus 로고    scopus 로고
    • A Prediction-Based Resampling method for Estimating the number of clusters in a dataset
    • Dudoit, S. and J. Fridlyand, 2002. A Prediction-Based Resampling method for Estimating the number of clusters in a dataset, Genome Biology, 3(7): 1-21.
    • (2002) Genome Biology , vol.3 , Issue.7 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 16
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical Programming for Data Mining: Formulations and Challenges
    • Bradley, P., U. Fayyad, and O. Mangasarian, 1999. Mathematical Programming for Data Mining: Formulations and Challenges. INFORMS Journal on Computing 11(3): 217-238.
    • (1999) INFORMS Journal on Computing , vol.11 , Issue.3 , pp. 217-238
    • Bradley, P.1    Fayyad, U.2    Mangasarian, O.3
  • 17
    • 0003136237 scopus 로고
    • Efficient and Effective Clustering Methods for Spatial Data Mining
    • Santiago, Chile
    • Ng, R. and J. Han, 1994. Efficient and Effective Clustering Methods for Spatial Data Mining, Proc. 20th International Conference on Very Large Databases, Santiago, Chile, pp. 144-155.
    • (1994) Proc. 20th International Conference on Very Large Databases , pp. 144-155
    • Ng, R.1    Han, J.2
  • 18
    • 24944536258 scopus 로고    scopus 로고
    • A New and Efficient K-Medoid Algorithm for Spatial Clustering
    • in O. Gervasi et al. (Eds.):, © Springer-Verlag
    • Zhang, Q. and I. Couloigner, 2005. A New and Efficient K-Medoid Algorithm for Spatial Clustering, in O. Gervasi et al. (Eds.): ICCSA 2005, Lecture Notes in Computer Science (LNCS) 3482, pp. 181 - 189, 2005. © Springer-Verlag.
    • (2005) ICCSA 2005, Lecture Notes in Computer Science (LNCS) 3482 , pp. 181-189
    • Zhang, Q.1    Couloigner, I.2
  • 22
    • 0039845384 scopus 로고    scopus 로고
    • Efficient Algorithm for Mining Outliers from Large Data Sets
    • Ramaswami, S., R. Rastogi and K. Shim, 2000. Efficient Algorithm for Mining Outliers from Large Data Sets. Proc. ACM SIGMOD, pp. 427-438.
    • (2000) Proc. ACM SIGMOD , pp. 427-438
    • Ramaswami, S.1    Rastogi, R.2    Shim, K.3
  • 24
    • 0039253819 scopus 로고    scopus 로고
    • Lof: Identifying density-based local outliers
    • In Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. ACM Press
    • Breunig, M., H. Kriegel, R. Ng and J. Sander, 2000. Lof: identifying density-based local outliers. In Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. ACM Press, 93-104.
    • (2000) , pp. 93-104
    • Breunig, M.1    Kriegel, H.2    Ng, R.3    Sander, J.4
  • 25
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • Proc. of the International Conference on Data Engineering
    • Papadimitriou, S., H. Kitawaga, P. Gibbons, and C. Faloutsos, 2003. LOCI: Fast outlier detection using the local correlation integral. Proc. of the International Conference on Data Engineering, pp. 315-326.
    • (2003) , pp. 315-326
    • Papadimitriou, S.1    Kitawaga, H.2    Gibbons, P.3    Faloutsos, C.4
  • 26
    • 0024568388 scopus 로고
    • Fuzzy Clustering for the Estimation of the Parameters of the Components of Mixtures of Normal Distribution
    • Gath, I and A. Geva, 1989. Fuzzy Clustering for the Estimation of the Parameters of the Components of Mixtures of Normal Distribution, Pattern Recognition Letters, 9, pp. 77-86.
    • (1989) Pattern Recognition Letters , vol.9 , pp. 77-86
    • Gath, I.1    Geva, A.2
  • 27
    • 38249004666 scopus 로고
    • Detection of Outliers and Robust Estimation using Fuzzy Clustering
    • Cutsem, B and I. Gath, 1993. Detection of Outliers and Robust Estimation using Fuzzy Clustering, Computational Statistics & Data Analyses 15, pp. 47-61.
    • (1993) Computational Statistics & Data Analyses , vol.15 , pp. 47-61
    • Cutsem, B.1    Gath, I.2
  • 28
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase Clustering Process for Outlier Detection
    • Jiang, M., S. Tseng and C. Su, 2001. Two-phase Clustering Process for Outlier Detection, Pattern Recognition Letters, 22: 691-700.
    • (2001) Pattern Recognition Letters , vol.22 , pp. 691-700
    • Jiang, M.1    Tseng, S.2    Su, C.3
  • 29
    • 84893204428 scopus 로고    scopus 로고
    • Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez, available at, In proceedings IPSI 2004, Venice
    • Acuna E. and Rodriguez C., (2004), A Meta Analysis Study of Outlier Detection Methods in Classification, Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez, available at academic.uprm.edu/~eacuna/paperout.pdf. In proceedings IPSI 2004, Venice.
    • (2004) A Meta Analysis Study of Outlier Detection Methods in Classification
    • Acuna, E.1    Rodriguez, C.2
  • 30
    • 34248551279 scopus 로고    scopus 로고
    • Improving Hierarchical Cluster Analysis: A New Method with Outlier Detection and Automatic Clustering
    • Almeida, J., L. Barbosa, A. Pais and S. Formosinho, 2007. Improving Hierarchical Cluster Analysis: A New Method with Outlier Detection and Automatic Clustering, Chemometrics and Intelligent Laboratory Systems 87: 208-217.
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.87 , pp. 208-217
    • Almeida, J.1    Barbosa, L.2    Pais, A.3    Formosinho, S.4
  • 31
    • 47949101596 scopus 로고    scopus 로고
    • An approach to Outlier Detection of Software Measurement Data using the K-means Clustering Method
    • First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), Madrid
    • Yoon, K., O. Kwon and D. Bae, 2007. An approach to Outlier Detection of Software Measurement Data using the K-means Clustering Method, First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), Madrid, pp. 443-445.
    • (2007) , pp. 443-445
    • Yoon, K.1    Kwon, O.2    Bae, D.3
  • 32
    • 34250824637 scopus 로고    scopus 로고
    • Unsupervised minor prototype detection using an adaptive population partitioning algorithm
    • Chiang, J. and Z. Yin, 2007. Unsupervised minor prototype detection using an adaptive population partitioning algorithm, Pattern Recognition 40: 3132 - 3145.
    • (2007) Pattern Recognition , vol.40 , pp. 3132-3145
    • Chiang, J.1    Yin, Z.2
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Department of Information and Computer Sciences
    • Blake, C. L. & C. J. Merz, 1998. UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/mlearn/MLRepository.html, University of California, Irvine, Department of Information and Computer Sciences.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.