메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages

Artificial neural networks modeling gene-environment interaction

Author keywords

Gene environment interaction; MLP; Multilayer perceptron; Neural network; Pattern recognition; Simulation study

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; ENVIRONMENTAL FACTOR; GENE FREQUENCY; GENE LOCUS; GENOTYPE; GENOTYPE ENVIRONMENT INTERACTION; HEREDITY; HUMAN;

EID: 84860821031     PISSN: None     EISSN: 14712156     Source Type: Journal    
DOI: 10.1186/1471-2156-13-37     Document Type: Article
Times cited : (6)

References (25)
  • 1
    • 52949091164 scopus 로고    scopus 로고
    • Prediction of individual genetic risk of complex disease
    • 10.1016/j.gde.2008.07.006, 18682292
    • Wray N, Goddard M, Visscher P. Prediction of individual genetic risk of complex disease. Curr Opin Genet Dev 2008, 18:257-263. 10.1016/j.gde.2008.07.006, 18682292.
    • (2008) Curr Opin Genet Dev , vol.18 , pp. 257-263
    • Wray, N.1    Goddard, M.2    Visscher, P.3
  • 2
    • 58549096683 scopus 로고    scopus 로고
    • Decanalization and the origin of complex disease
    • Gibson G. Decanalization and the origin of complex disease. Nat Rev Genet 2009, 10(2):134-140.
    • (2009) Nat Rev Genet , vol.10 , Issue.2 , pp. 134-140
    • Gibson, G.1
  • 3
    • 77049105158 scopus 로고    scopus 로고
    • Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer
    • 10.1016/j.tig.2009.12.008, 2826571, 20106545
    • Galvan A, Ioannidis J, Dragani T. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. Trends Genet 2010, 26(3):132-141. 10.1016/j.tig.2009.12.008, 2826571, 20106545.
    • (2010) Trends Genet , vol.26 , Issue.3 , pp. 132-141
    • Galvan, A.1    Ioannidis, J.2    Dragani, T.3
  • 6
    • 78650637042 scopus 로고    scopus 로고
    • Genetic association and gene-environment interaction: a new method for overcoming the lack of exposure information in controls
    • 10.1093/aje/kwq352, 21084555
    • Kazma R, Babron M, Génin E. Genetic association and gene-environment interaction: a new method for overcoming the lack of exposure information in controls. Am J Epidemiol 2011, 173(2):225-235. 10.1093/aje/kwq352, 21084555.
    • (2011) Am J Epidemiol , vol.173 , Issue.2 , pp. 225-235
    • Kazma, R.1    Babron, M.2    Génin, E.3
  • 7
    • 79952442152 scopus 로고    scopus 로고
    • Gene-environment interaction in the etiology of mathematical ability using SNP sets
    • 10.1007/s10519-010-9405-6, 3029801, 20978832
    • Docherty S, Kovas Y, Plomin R. Gene-environment interaction in the etiology of mathematical ability using SNP sets. Behav Genet 2011, 41:141-154. 10.1007/s10519-010-9405-6, 3029801, 20978832.
    • (2011) Behav Genet , vol.41 , pp. 141-154
    • Docherty, S.1    Kovas, Y.2    Plomin, R.3
  • 9
    • 84871384313 scopus 로고    scopus 로고
    • Use of an artificial neural network in exploring the dose-response relationship between cigarette smoking and lung cancer risk in male
    • Bammann K, Pohlabeln H, Pigeot I, Jöckel K. Use of an artificial neural network in exploring the dose-response relationship between cigarette smoking and lung cancer risk in male. Far East J Theor Stat 2005, 16(2):285-302.
    • (2005) Far East J Theor Stat , vol.16 , Issue.2 , pp. 285-302
    • Bammann, K.1    Pohlabeln, H.2    Pigeot, I.3    Jöckel, K.4
  • 10
    • 76749150056 scopus 로고    scopus 로고
    • Neural networks for modeling gene-gene interactions in association studies
    • 2817696, 20030838
    • Günther F, Wawro N, Bammann K. Neural networks for modeling gene-gene interactions in association studies. BMC Genet 2009, 10:87. 2817696, 20030838.
    • (2009) BMC Genet , vol.10 , pp. 87
    • Günther, F.1    Wawro, N.2    Bammann, K.3
  • 11
    • 77955662214 scopus 로고    scopus 로고
    • Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L
    • 10.1016/j.jplph.2010.04.008, 20542352
    • Gago J, Landín M, Gallego P. Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L. J Plant Physiol 2010, 167:1226-1231. 10.1016/j.jplph.2010.04.008, 20542352.
    • (2010) J Plant Physiol , vol.167 , pp. 1226-1231
    • Gago, J.1    Landín, M.2    Gallego, P.3
  • 12
    • 77954758237 scopus 로고    scopus 로고
    • A hybrid diagnosis model for determining the types of the liver disease
    • 10.1016/j.compbiomed.2010.06.002, 20591425
    • Lin RH, Chuang CL. A hybrid diagnosis model for determining the types of the liver disease. Comput Biol Med 2010, 40(7):665-670. 10.1016/j.compbiomed.2010.06.002, 20591425.
    • (2010) Comput Biol Med , vol.40 , Issue.7 , pp. 665-670
    • Lin, R.H.1    Chuang, C.L.2
  • 13
    • 0242300117 scopus 로고    scopus 로고
    • HIV Lipodystrophy Case Definition Study Group: HIV lipodystrophy case definition using artificial neural network modelling
    • Ioannidis J, Trikalinos T, Law M, Carr A. HIV Lipodystrophy Case Definition Study Group: HIV lipodystrophy case definition using artificial neural network modelling. Antivir Ther 2003, 8:435-441.
    • (2003) Antivir Ther , vol.8 , pp. 435-441
    • Ioannidis, J.1    Trikalinos, T.2    Law, M.3    Carr, A.4
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat 1978, 6:461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 18
    • 84871390883 scopus 로고    scopus 로고
    • Neuralnet: Training of neural networks
    • Günther F, Fritsch S. neuralnet: Training of neural networks. R J 2010, 2:30-38.
    • (2010) R J , vol.2 , pp. 30-38
    • Günther, F.1    Fritsch, S.2
  • 20
    • 0035965002 scopus 로고    scopus 로고
    • Interpreting neural-network results: a simulation study
    • Intrator O, Intrator N. Interpreting neural-network results: a simulation study. Comput Stat Data An 2001, 37:373-393.
    • (2001) Comput Stat Data An , vol.37 , pp. 373-393
    • Intrator, O.1    Intrator, N.2
  • 21
    • 79951760631 scopus 로고    scopus 로고
    • Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens
    • 10.3382/ps.2010-00723, 21325246
    • Savegnago R, Nunes B, Caetano S, Ferraudo A, Schmidt G, Ledur M, Munari D. Comparison of logistic and neural network models to fit to the egg production curve of White Leghorn hens. Poult Sci 2011, 90(3):705-711. 10.3382/ps.2010-00723, 21325246.
    • (2011) Poult Sci , vol.90 , Issue.3 , pp. 705-711
    • Savegnago, R.1    Nunes, B.2    Caetano, S.3    Ferraudo, A.4    Schmidt, G.5    Ledur, M.6    Munari, D.7
  • 22
    • 33947259345 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients
    • Liew P, Lee Y, Lin Y, Lee T, Lee W, Wang W, Chien C. Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease among obese patients. Digest Liver Dis 2007, 39(4):356-362.
    • (2007) Digest Liver Dis , vol.39 , Issue.4 , pp. 356-362
    • Liew, P.1    Lee, Y.2    Lin, Y.3    Lee, T.4    Lee, W.5    Wang, W.6    Chien, C.7
  • 25
    • 0028466750 scopus 로고
    • Advanced supervised learning in multi-layer perceptrons - from backpropagation to adaptive learning algorithms
    • Riedmiller M. Advanced supervised learning in multi-layer perceptrons - from backpropagation to adaptive learning algorithms. Int J Comput Stand Interf 1994, 16:265-275.
    • (1994) Int J Comput Stand Interf , vol.16 , pp. 265-275
    • Riedmiller, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.