메뉴 건너뛰기




Volumn 8317, Issue , 2012, Pages

Robust automated detection, segmentation and classification of hepatic tumors from CT data

Author keywords

Classification; CT; Detection; Liver; Segmentation; Tumor

Indexed keywords

ACQUISITION PARAMETERS; AUTOMATED DETECTION; AUTOMATED METHODS; CT; CT DATA; CT IMAGE; FALSE DETECTIONS; FALSE POSITIVE; FEATURE SPACE; GRAPH CUT; GROUND TRUTH; HEPATIC TUMORS; INITIAL SEGMENTATION; LIVER TUMORS; TEST DATA; TRAINING AND TESTING; TUMOR DETECTION;

EID: 84860752779     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.910617     Document Type: Conference Paper
Times cited : (1)

References (20)
  • 1
    • 0003964361 scopus 로고    scopus 로고
    • American Cancer Society American Cancer Society, Atlanta
    • American Cancer Society, [Cancer Facts and Figures 2011], American Cancer Society, Atlanta (2011)
    • (2011) Cancer Facts and Figures , vol.2011
  • 2
    • 84860704544 scopus 로고    scopus 로고
    • Saunders Elsevier Cecil Medicine. 23rd ed., Philadelphia
    • Lewis, R.L., [Liver and Biliary Tract Tumors], Saunders Elsevier Cecil Medicine. 23rd ed., Philadelphia, (2007)
    • (2007) Liver and Biliary Tract Tumors
    • Lewis, R.L.1
  • 6
    • 84955314666 scopus 로고    scopus 로고
    • Semi-automatic segmentation of 3D liver tumors from CT scans using voxel classification and propagational learning
    • Zhou, J. et al., "Semi-automatic Segmentation of 3D Liver Tumors from CT Scans Using Voxel Classification and Propagational Learning," MICCAI Workshop on 3D Segmentation in the Clinic: a Grand Challenge II (2008)
    • (2008) MICCAI Workshop on 3D Segmentation in the Clinic: A Grand Challenge II
    • Zhou, J.1
  • 10
    • 82355169780 scopus 로고    scopus 로고
    • Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation
    • Häme, Y. Pollari, M., "Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation," Med Image Anal. 16(1), 140-9 (2011)
    • (2011) Med Image Anal. , vol.16 , Issue.1 , pp. 140-149
    • Häme, Y.1    Pollari, M.2
  • 11
    • 79955931902 scopus 로고    scopus 로고
    • Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation
    • Freiman, M. Cooper, O. Lischinski, D. Joskowicz, L., "Liver tumors segmentation from CTA images using voxels classification and affinity constraint propagation," Int J Comput Assist Radiol Surg 6(2), 247-55 (2011)
    • (2011) Int J Comput Assist Radiol Surg , vol.6 , Issue.2 , pp. 247-255
    • Freiman, M.1    Cooper, O.2    Lischinski, D.3    Joskowicz, L.4
  • 12
    • 80053594552 scopus 로고    scopus 로고
    • Computer-aided detection of hepatocellular carcinoma in hepatic CC: False positive reduction with feature selection
    • Xu, J.W., Suzuki, K., "Computer-Aided Detection of Hepatocellular Carcinoma in Hepatic CC: False Positive Reduction with Feature Selection," IEEE Int Sym Biomed Im., 1097-1100 (2011)
    • (2011) IEEE Int Sym Biomed Im. , pp. 1097-1100
    • Xu, J.W.1    Suzuki, K.2
  • 14
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Boykov, Y. Kolmogorov, V., "An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision," IEEE TPAMI 26(9), 1124-1137 (2004)
    • (2004) IEEE TPAMI , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 15
    • 84883370201 scopus 로고    scopus 로고
    • Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization
    • Linguraru, M.G. et al., "Multi-Organ Segmentation from Multi-Phase Abdominal CT via 4D Graphs using Enhancement, Shape and Location Optimization," MICCAI 2010 LNCS 6363, 89-96 (2010)
    • (2010) MICCAI 2010 LNCS , vol.6363 , pp. 89-96
    • Linguraru, M.G.1
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • Peng, H.C., Long, F.H., Ding, C., "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy," IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226-1238 (2005) (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 0031962305 scopus 로고    scopus 로고
    • Statistical comparison of two ROC-curve estimates obtained from partially-paired datasets
    • DOI 10.1177/0272989X9801800118
    • Metz, C.E. Herman, B.A. Roe, C.A., "Statistical comparison of two ROC curve estimates obtained from partially-paired datasets," Med Decis Making 18, 110-121 (1998) (Pubitemid 28041647)
    • (1998) Medical Decision Making , vol.18 , Issue.1 , pp. 110-121
    • Metz, C.E.1    Herman, B.A.2    Roe, C.A.3
  • 20
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C., "A tutorial on Support Vector Machines for pattern recognition," Data Mining and Knowledge Discovery 2, 121-167 (1998) (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.