메뉴 건너뛰기




Volumn 35, Issue 5, 2012, Pages 385-387

Inferring prevalence from presence-only data: A response to 'Can we model the probability of presence of species without absence data?'

Author keywords

[No Author keywords available]

Indexed keywords

DATA INTERPRETATION; ECOLOGICAL MODELING; ENVIRONMENTAL CONDITIONS; PROBABILITY; SPECIES OCCURRENCE;

EID: 84860612628     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2011.07285.x     Document Type: Article
Times cited : (6)

References (15)
  • 1
    • 73949145113 scopus 로고    scopus 로고
    • Hutchinson's duality: the once and future niche
    • Colwell R. K. and Rangel T. F. 2009. Hutchinson's duality: the once and future niche. Proc. Natl Acad. Sci. USA 106: 19651-19658.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 19651-19658
    • Colwell, R.K.1    Rangel, T.F.2
  • 2
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 3
    • 78649991963 scopus 로고    scopus 로고
    • A statistical explanation of maxent for eco logists
    • Elith J. et al. 2011. A statistical explanation of maxent for eco logists. Divers. Distrib. 17: 43-57.
    • (2011) Divers. Distrib. , vol.17 , pp. 43-57
    • Elith, J.1
  • 4
    • 0003337955 scopus 로고    scopus 로고
    • Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?
    • Hirzel A. H. et al. 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 87: 2027-2036.
    • (2002) Ecology , vol.87 , pp. 2027-2036
    • Hirzel, A.H.1
  • 5
    • 12144266865 scopus 로고    scopus 로고
    • Use and interpretation of logistic regression in habitat-selection studies
    • Keating K. A. and Cherry S. 2004. Use and interpretation of logistic regression in habitat-selection studies. J. Wildl. Manage. 68: 774-789.
    • (2004) J. Wildl. Manage. , vol.68 , pp. 774-789
    • Keating, K.A.1    Cherry, S.2
  • 6
    • 0009206367 scopus 로고    scopus 로고
    • Case-control studies with contaminated controls
    • Lancaster T. and Imbens G. 1996. Case-control studies with contaminated controls. J. Econometrics 71: 145-160.
    • (1996) J. Econometrics , vol.71 , pp. 145-160
    • Lancaster, T.1    Imbens, G.2
  • 7
    • 33845691798 scopus 로고    scopus 로고
    • Weighted distributions and estimation of resource selection probability functions
    • Lele S. R. and Keim J. L. 2006. Weighted distributions and estimation of resource selection probability functions. Ecology 87: 3021-3028.
    • (2006) Ecology , vol.87 , pp. 3021-3028
    • Lele, S.R.1    Keim, J.L.2
  • 8
    • 83055179750 scopus 로고    scopus 로고
    • Can we model the probability of presence of species without absence data?
    • Li W. et al. 2011. Can we model the probability of presence of species without absence data? Ecography 34: 1096-1105.
    • (2011) Ecography , vol.34 , pp. 1096-1105
    • Li, W.1
  • 10
    • 80055054109 scopus 로고    scopus 로고
    • Logistic methods for resource selection functions and presence-only species distribution models
    • Phillips S. and Elith J. 2011. Logistic methods for resource selection functions and presence-only species distribution models. AAAI, pp. 1384-1389.
    • (2011) AAAI , pp. 1384-1389
    • Phillips, S.1    Elith, J.2
  • 11
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
    • Phillips S. et al. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19: 181-197.
    • (2009) Ecol. Appl. , vol.19 , pp. 181-197
    • Phillips, S.1
  • 12
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips S. J. et al. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231-259.
    • (2006) Ecol. Model. , vol.190 , pp. 231-259
    • Phillips, S.J.1
  • 13
    • 0039333330 scopus 로고
    • Estimating logistic regression models when the dependent variable has no variance
    • Steinberg D. and Cardell N. S. 1992. Estimating logistic regression models when the dependent variable has no variance. Commun. Stat. Theory Methods 21: 423-450.
    • (1992) Commun. Stat. Theory Methods , vol.21 , pp. 423-450
    • Steinberg, D.1    Cardell, N.S.2
  • 14
    • 0032903209 scopus 로고    scopus 로고
    • The GARP modelling system: problems and solutions to automated spatial prediction
    • Stockwell D. and Peters D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13: 143-158.
    • (1999) Int. J. Geogr. Inf. Sci. , vol.13 , pp. 143-158
    • Stockwell, D.1    Peters, D.2
  • 15
    • 66949112586 scopus 로고    scopus 로고
    • Presence-only data and the EM algorithm
    • Ward G. et al. 2009. Presence-only data and the EM algorithm. Biometrics 65: 554-563.
    • (2009) Biometrics , vol.65 , pp. 554-563
    • Ward, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.