메뉴 건너뛰기




Volumn 114, Issue , 2012, Pages 122-131

Artificial intelligence based modeling for predicting the disinfection by-products in water

Author keywords

Artificial neural networks; Gene expression programming; Predictive modeling; Sensitivity analysis; Support vector machines; Trihalomethanes

Indexed keywords

BROMIDE; CHLORINE; ORGANIC CARBON; TRIHALOMETHANE; WATER;

EID: 84860443486     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2012.03.014     Document Type: Article
Times cited : (75)

References (73)
  • 1
    • 0034284934 scopus 로고    scopus 로고
    • Simulation of THM species in water distribution systems
    • Elshorbagy W.E., Abu-Qadais H., Elsheamy M.K. Simulation of THM species in water distribution systems. Water Research 2000, 34:3431-3439.
    • (2000) Water Research , vol.34 , pp. 3431-3439
    • Elshorbagy, W.E.1    Abu-Qadais, H.2    Elsheamy, M.K.3
  • 2
    • 0035105875 scopus 로고    scopus 로고
    • Spatial and temporal evolution of trihalomethanes in three water distribution systems
    • Rodriguez M.J., Serodes J.B. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Research 2001, 35:1572-1586.
    • (2001) Water Research , vol.35 , pp. 1572-1586
    • Rodriguez, M.J.1    Serodes, J.B.2
  • 5
    • 37149035290 scopus 로고    scopus 로고
    • National primary drinking water regulation: stage 2 disinfectants and disinfection byproducts (D/DBP)
    • US EPA
    • US EPA National primary drinking water regulation: stage 2 disinfectants and disinfection byproducts (D/DBP). Final Rule 2003, 68:159.
    • (2003) Final Rule , vol.68 , pp. 159
  • 6
    • 34447253130 scopus 로고    scopus 로고
    • Chemometric modeling and prediction of trihalomethane formation in Barcelona's water works plant
    • Platikanov S., Puig X., Martin J., Tauler R. Chemometric modeling and prediction of trihalomethane formation in Barcelona's water works plant. Water Research 2007, 41:3394-3406.
    • (2007) Water Research , vol.41 , pp. 3394-3406
    • Platikanov, S.1    Puig, X.2    Martin, J.3    Tauler, R.4
  • 7
  • 8
    • 0035985891 scopus 로고    scopus 로고
    • Multiple regression models: a methodology for evaluating trihalomethanes concentration in drinking water from raw water characteristics
    • Golfinopoulos S.K., Arhonditsis G.B. Multiple regression models: a methodology for evaluating trihalomethanes concentration in drinking water from raw water characteristics. Chemosphere 2002, 47:1007-1018.
    • (2002) Chemosphere , vol.47 , pp. 1007-1018
    • Golfinopoulos, S.K.1    Arhonditsis, G.B.2
  • 10
    • 0142042924 scopus 로고    scopus 로고
    • Formations, modelling and validation of Trihalomethanes(THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia
    • Abdullah M.P., Yew C.H., Ramli M.S.B. Formations, modelling and validation of Trihalomethanes(THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia. Water Research 2003, 37:4637-4644.
    • (2003) Water Research , vol.37 , pp. 4637-4644
    • Abdullah, M.P.1    Yew, C.H.2    Ramli, M.S.B.3
  • 11
    • 1642462145 scopus 로고    scopus 로고
    • Disinfection by-products (DBPs) in drinking water and the predictive models for their occurrence: a review
    • Sadiq R., Rodriguez M.J. Disinfection by-products (DBPs) in drinking water and the predictive models for their occurrence: a review. The Science of the Total Environment 2004, 321:21-46.
    • (2004) The Science of the Total Environment , vol.321 , pp. 21-46
    • Sadiq, R.1    Rodriguez, M.J.2
  • 13
    • 34447286696 scopus 로고    scopus 로고
    • Application of back-propagation neural network modeling for free residual chlorine, total trihalomethanes and trihalomethanes speciation
    • Rodriguez M.J., Serodes J.B. Application of back-propagation neural network modeling for free residual chlorine, total trihalomethanes and trihalomethanes speciation. Journal of Environmental Engineering and Science 2004, 3:S25-S34.
    • (2004) Journal of Environmental Engineering and Science , vol.3
    • Rodriguez, M.J.1    Serodes, J.B.2
  • 14
    • 34548434711 scopus 로고    scopus 로고
    • Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water)
    • Hong H.C., Liang Y., Han B.P., Mazumder A., Wong M.H. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water). The Science of the Total Environment 2007, 385:48-54.
    • (2007) The Science of the Total Environment , vol.385 , pp. 48-54
    • Hong, H.C.1    Liang, Y.2    Han, B.P.3    Mazumder, A.4    Wong, M.H.5
  • 15
    • 34250883310 scopus 로고    scopus 로고
    • Factorial analysis of the trihalomethanes formation in water disinfection using chlorine
    • Rodrigues P.M.S.M., Esteves da Silva J.C.G., Antunes M.C.G. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine. Analytica Chimica Acta 2007, 595:266-274.
    • (2007) Analytica Chimica Acta , vol.595 , pp. 266-274
    • Rodrigues, P.M.S.M.1    Esteves da Silva, J.C.G.2    Antunes, M.C.G.3
  • 16
    • 34247514054 scopus 로고    scopus 로고
    • Multiple linear regression modeling of disinfection by-product formation in Istanbul drinking water reservoirs
    • Uyak V., Ozdemir K., Toroz I. Multiple linear regression modeling of disinfection by-product formation in Istanbul drinking water reservoirs. The Science of the Total Environment 2007, 378:269-280.
    • (2007) The Science of the Total Environment , vol.378 , pp. 269-280
    • Uyak, V.1    Ozdemir, K.2    Toroz, I.3
  • 17
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality - a case study
    • Singh K.P., Basant A., Malik A., Jain G. Artificial neural network modeling of the river water quality - a case study. Ecological Modelling 2009, 220:888-895.
    • (2009) Ecological Modelling , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 18
    • 71749090211 scopus 로고    scopus 로고
    • Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches-a case study
    • Singh K.P., Basant N., Malik A., Jain G. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches-a case study. Analytica Chimica Acta 2010, 658:1-11.
    • (2010) Analytica Chimica Acta , vol.658 , pp. 1-11
    • Singh, K.P.1    Basant, N.2    Malik, A.3    Jain, G.4
  • 19
    • 80052261350 scopus 로고    scopus 로고
    • Support vector machines in water quality management: a case study
    • Singh K.P., Basant N., Gupta S. Support vector machines in water quality management: a case study. Analytica Chimica Acta 2011, 703:152-162.
    • (2011) Analytica Chimica Acta , vol.703 , pp. 152-162
    • Singh, K.P.1    Basant, N.2    Gupta, S.3
  • 20
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using Support Vector Regression
    • Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression. Applied Energy 2010, 88:368-375.
    • (2010) Applied Energy , vol.88 , pp. 368-375
    • Kavaklioglu, K.1
  • 22
    • 79551631825 scopus 로고    scopus 로고
    • Modeling the performance of upflow anaerobic filters treating paper-mill wastewater using gene-expression programming
    • Seckin G., Yilmaz T., Guven A., Yeceer A., Basibuyuk M. Modeling the performance of upflow anaerobic filters treating paper-mill wastewater using gene-expression programming. Ecological Engineering 2011, 37:523-528.
    • (2011) Ecological Engineering , vol.37 , pp. 523-528
    • Seckin, G.1    Yilmaz, T.2    Guven, A.3    Yeceer, A.4    Basibuyuk, M.5
  • 23
    • 77955281258 scopus 로고    scopus 로고
    • Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash
    • Saridemir M. Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash. Construction and Building Materials 2010, 24:1911-1919.
    • (2010) Construction and Building Materials , vol.24 , pp. 1911-1919
    • Saridemir, M.1
  • 24
    • 78650705343 scopus 로고    scopus 로고
    • Soil liquefaction modeling by Genetic Expression Programming and Neuro Fuzzy
    • Kayadelen C. Soil liquefaction modeling by Genetic Expression Programming and Neuro Fuzzy. Expert Systems with Applications 2011, 38:4080-4087.
    • (2011) Expert Systems with Applications , vol.38 , pp. 4080-4087
    • Kayadelen, C.1
  • 25
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in costal aquifer
    • Yoon H., Jun S.C., Hyun Y., Bae G.O., Lee K.K. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in costal aquifer. Journal of Hydrology 2011, 396:128-138.
    • (2011) Journal of Hydrology , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5
  • 26
    • 43849095644 scopus 로고    scopus 로고
    • Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds
    • Pan Y., Jiang J., Wang R., Cao H. Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and Intelligent Laborary Systems 2008, 92:169-178.
    • (2008) Chemometrics and Intelligent Laborary Systems , vol.92 , pp. 169-178
    • Pan, Y.1    Jiang, J.2    Wang, R.3    Cao, H.4
  • 27
    • 77951125984 scopus 로고    scopus 로고
    • Support vector machine based data processing algorithm for wear degree classification of slurry pump systems
    • Qu J., Zuo M.J. Support vector machine based data processing algorithm for wear degree classification of slurry pump systems. Measurement 2010, 43:781-791.
    • (2010) Measurement , vol.43 , pp. 781-791
    • Qu, J.1    Zuo, M.J.2
  • 28
    • 72549110480 scopus 로고    scopus 로고
    • Soil type classification and estimation of soil properties using support vector machines
    • Kovacevic M., Bajat B., Gajic B. Soil type classification and estimation of soil properties using support vector machines. Geoderma 2010, 154:340-347.
    • (2010) Geoderma , vol.154 , pp. 340-347
    • Kovacevic, M.1    Bajat, B.2    Gajic, B.3
  • 31
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik V., Golowich S.E., Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 1997, 9:287-291.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 287-291
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 34
    • 68049113510 scopus 로고    scopus 로고
    • New approach for stage-discharge relationship: gene expression programming
    • Guven A., Aytek A. New approach for stage-discharge relationship: gene expression programming. Journal of Hydrologic Engineering 2009, 14:812-820.
    • (2009) Journal of Hydrologic Engineering , vol.14 , pp. 812-820
    • Guven, A.1    Aytek, A.2
  • 35
    • 84855255572 scopus 로고    scopus 로고
    • Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) Box-Behnken design
    • Singh K.P., Rai P., Pandey P., Sinha S. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) Box-Behnken design. Environmental Science and Pollution Research 2012, 19:113-127.
    • (2012) Environmental Science and Pollution Research , vol.19 , pp. 113-127
    • Singh, K.P.1    Rai, P.2    Pandey, P.3    Sinha, S.4
  • 37
    • 78049423298 scopus 로고    scopus 로고
    • Modeling and optimization of tartaric acid reactive extraction from aqueous solution: a comparison between response surface methodology and artificial neural network
    • Marchitan N., Cojocaru C., Mereuta A., Duca Gh., Cretescu I., Gonta M. Modeling and optimization of tartaric acid reactive extraction from aqueous solution: a comparison between response surface methodology and artificial neural network. Separation and Purification Technology 2010, 75:273-285.
    • (2010) Separation and Purification Technology , vol.75 , pp. 273-285
    • Marchitan, N.1    Cojocaru, C.2    Mereuta, A.3    Duca, G.4    Cretescu, I.5    Gonta, M.6
  • 38
    • 78650516171 scopus 로고    scopus 로고
    • Artificial neural network modeling and response surface methodology of desalination by reverse osmosis
    • Khayet M., Cojocaru C., Essalhi M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. Journal of Membrane Science 2011, 368:202-214.
    • (2011) Journal of Membrane Science , vol.368 , pp. 202-214
    • Khayet, M.1    Cojocaru, C.2    Essalhi, M.3
  • 41
    • 84860426597 scopus 로고    scopus 로고
    • Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India
    • Singh G., Panda R.K. Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. International Journal of Earth Sciences and Engineering 2011, 4:443-450.
    • (2011) International Journal of Earth Sciences and Engineering , vol.4 , pp. 443-450
    • Singh, G.1    Panda, R.K.2
  • 42
    • 34548274231 scopus 로고    scopus 로고
    • Improvement on BP algorithm in artificial neural network
    • Wang Q.H. Improvement on BP algorithm in artificial neural network. Journal of Qinghai University 2004, 22:82-84.
    • (2004) Journal of Qinghai University , vol.22 , pp. 82-84
    • Wang, Q.H.1
  • 45
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • Lin S.W., Lee Z.J., Chen S.C., Tseng T.Y. Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied Soft Computing 2008, 8:505-1512.
    • (2008) Applied Soft Computing , vol.8 , pp. 505-1512
    • Lin, S.W.1    Lee, Z.J.2    Chen, S.C.3    Tseng, T.Y.4
  • 47
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 48
    • 78751542590 scopus 로고    scopus 로고
    • Application of Support Vector Regression to predict metallogenic favourability degree
    • Wu C., Lv X., Cao X., Mo Y., Chen C. Application of Support Vector Regression to predict metallogenic favourability degree. International Journal of Physical Sciences 2010, 5:2523-2527.
    • (2010) International Journal of Physical Sciences , vol.5 , pp. 2523-2527
    • Wu, C.1    Lv, X.2    Cao, X.3    Mo, Y.4    Chen, C.5
  • 49
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., Ghafari Gousheh M. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology 2011, 401:177-189.
    • (2011) Journal of Hydrology , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Ghafari Gousheh, M.7
  • 50
    • 34447649349 scopus 로고    scopus 로고
    • Prediction of surface tension for common compounds based on noval methods using heuristic method and support vector machine
    • Wang J., Du H., Liu H., Yao X., Hu Z., Fan B. Prediction of surface tension for common compounds based on noval methods using heuristic method and support vector machine. Talanta 2007, 73:147-156.
    • (2007) Talanta , vol.73 , pp. 147-156
    • Wang, J.1    Du, H.2    Liu, H.3    Yao, X.4    Hu, Z.5    Fan, B.6
  • 52
    • 84860484696 scopus 로고    scopus 로고
    • Discovery unknown equations that describe large datasets using genetic programming techniques, Master thesis in electronic systems at Linkoping Institute of Technology, LITH-ISY-EX-05/3697
    • D.G. Munoz, Discovery unknown equations that describe large datasets using genetic programming techniques, Master thesis in electronic systems at Linkoping Institute of Technology, LITH-ISY-EX-05/3697, 2005.
    • (2005)
    • Munoz, D.G.1
  • 53
    • 33847675833 scopus 로고    scopus 로고
    • Genetic programming based formulation of rotation capacity of wide flange beams
    • Cevik A. Genetic programming based formulation of rotation capacity of wide flange beams. Journal of Constructional Steel Research 2007, 63:884-893.
    • (2007) Journal of Constructional Steel Research , vol.63 , pp. 884-893
    • Cevik, A.1
  • 54
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adoptive algorithm for solving problems
    • Ferriera C. Gene expression programming: a new adoptive algorithm for solving problems. Complex Systems 2001, 13:87-129.
    • (2001) Complex Systems , vol.13 , pp. 87-129
    • Ferriera, C.1
  • 55
    • 41749119185 scopus 로고    scopus 로고
    • Genetic programming approach for prediction of local scour downstream of hydraulic structures
    • Guven A., Gunal M. Genetic programming approach for prediction of local scour downstream of hydraulic structures. Journal of Irrigation and Drainage Engineering ASCE 2008, 132:241-249.
    • (2008) Journal of Irrigation and Drainage Engineering ASCE , vol.132 , pp. 241-249
    • Guven, A.1    Gunal, M.2
  • 56
    • 43549111646 scopus 로고    scopus 로고
    • Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming
    • Ozbay E., Gesoglu M., Guneyisi E. Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming. Construction and Building Materials 2008, 22:1831-1840.
    • (2008) Construction and Building Materials , vol.22 , pp. 1831-1840
    • Ozbay, E.1    Gesoglu, M.2    Guneyisi, E.3
  • 57
    • 39149131373 scopus 로고    scopus 로고
    • High energy physics event selection with Gene Expression Programming
    • Teodorescu L., Sherwood D. High energy physics event selection with Gene Expression Programming. Computer Physics Communications 2008, 178:409-419.
    • (2008) Computer Physics Communications , vol.178 , pp. 409-419
    • Teodorescu, L.1    Sherwood, D.2
  • 58
    • 34249895257 scopus 로고    scopus 로고
    • Real-time probabilistic forecasting of flood stages
    • Chen S.T., Yu P.S. Real-time probabilistic forecasting of flood stages. Journal of Hydrology 2007, 340:63-77.
    • (2007) Journal of Hydrology , vol.340 , pp. 63-77
    • Chen, S.T.1    Yu, P.S.2
  • 59
    • 41449109567 scopus 로고    scopus 로고
    • Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells
    • Yetilmezsoy K., Demirel S. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of Hazardous Materials 2008, 153:1288-1300.
    • (2008) Journal of Hazardous Materials , vol.153 , pp. 1288-1300
    • Yetilmezsoy, K.1    Demirel, S.2
  • 60
    • 77952889835 scopus 로고    scopus 로고
    • The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process
    • Elmolla E.S., Chaudhuri M., Eltoukhy M.M. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. Journal of Hazardous Materials 2010, 179:127-134.
    • (2010) Journal of Hazardous Materials , vol.179 , pp. 127-134
    • Elmolla, E.S.1    Chaudhuri, M.2    Eltoukhy, M.M.3
  • 63
    • 65649137200 scopus 로고    scopus 로고
    • An investigation on parameters for modeling THMs formation
    • Chowdhury S., Champagne P. An investigation on parameters for modeling THMs formation. Global NEST Journal 2008, 10:80-91.
    • (2008) Global NEST Journal , vol.10 , pp. 80-91
    • Chowdhury, S.1    Champagne, P.2
  • 64
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - a discussion of principles
    • Nash J.E., Sutcliffe I.V. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology 1970, 10:282-290.
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, I.V.2
  • 65
  • 66
    • 0029845515 scopus 로고
    • Indices for performance evaluation of predictive models in food microbiology
    • Ross T. Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Microbiology 1966, 81:501-508.
    • (1966) Journal of Applied Microbiology , vol.81 , pp. 501-508
    • Ross, T.1
  • 68
    • 0000957052 scopus 로고
    • Test for comparing elements of a correlation matrix
    • Steiger J.H. Test for comparing elements of a correlation matrix. Psychological Bulletin 1980, 87:245-261.
    • (1980) Psychological Bulletin , vol.87 , pp. 245-261
    • Steiger, J.H.1
  • 69
    • 65649145774 scopus 로고    scopus 로고
    • Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review
    • Chowdhury S., Champagne P., McLellan P.J. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. The Science of the Total Environment 2009, 407:4189-4206.
    • (2009) The Science of the Total Environment , vol.407 , pp. 4189-4206
    • Chowdhury, S.1    Champagne, P.2    McLellan, P.J.3
  • 73
    • 17744405945 scopus 로고    scopus 로고
    • The role of natural organic matter during formation of chlorination by-products: a review
    • Nikolaou A.D., Lekkas T.D. The role of natural organic matter during formation of chlorination by-products: a review. Acta Hydrochimica et Hydrobiologica 2001, 29:63-67.
    • (2001) Acta Hydrochimica et Hydrobiologica , vol.29 , pp. 63-67
    • Nikolaou, A.D.1    Lekkas, T.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.