-
1
-
-
13844316757
-
Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer
-
Baggerly, K. A., et al. (2005). Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Nat. Cancer Inst., 97(4): 307-309.
-
(2005)
J. Nat. Cancer Inst.
, vol.97
, Issue.4
, pp. 307-309
-
-
Baggerly, K.A.1
-
2
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine Learning, 45: 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
0003802343
-
Classification and Regression Trees
-
Monterey, CA: Wadsworth and Brooks/Cole.
-
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Monterey, CA: Wadsworth and Brooks/Cole.
-
(1984)
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
4
-
-
0000343716
-
Submodel selection and evaluation in regression. The X-random case
-
Breiman, L., and Spector, P. (1992). Submodel selection and evaluation in regression. The X-random case. Int. Stat. Rev., 60: 291-319.
-
(1992)
Int. Stat. Rev.
, vol.60
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
5
-
-
0000354976
-
A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
-
Burman, P. (1989). A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76: 503-514.
-
(1989)
Biometrika
, vol.76
, pp. 503-514
-
-
Burman, P.1
-
6
-
-
84886499957
-
Explaining the Gibbs sampler
-
Casella, G., and George, E. I. (1991). Explaining the Gibbs sampler. Am. Stat., 26: 16-174.
-
(1991)
Am. Stat.
, vol.26
, pp. 16-174
-
-
Casella, G.1
George, E.I.2
-
7
-
-
32344446687
-
Understanding the Metropolis-Hastings Algorithm
-
Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. Am. Stat., 49(4): 327-335.
-
(1995)
Am. Stat.
, vol.49
, Issue.4
, pp. 327-335
-
-
Chib, S.1
Greenberg, E.2
-
8
-
-
84886496188
-
Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics
-
Cambridge: Cambridge University Press.
-
Davison, A. C., and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
-
(1997)
Davison, A. C., and Hinkley, D. V.
-
-
-
9
-
-
26644446561
-
Asymptotics of cross-validated risk estimation in model selection and performance assessment
-
Dudoit, S., and van der Laan, M. J. (2005). Asymptotics of cross-validated risk estimation in model selection and performance assessment. Stat. Methodol., 2(2): 131-154.
-
(2005)
Stat. Methodol.
, vol.2
, Issue.2
, pp. 131-154
-
-
Dudoit, S.1
van der Laan, M.J.2
-
10
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvement on cross-validation
-
Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Am. Stat. Assoc., 78: 316-331.
-
(1983)
J. Am. Stat. Assoc.
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
11
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation
-
Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. J. Am. Stat. Assoc., 99: 619-642.
-
(2004)
J. Am. Stat. Assoc.
, vol.99
, pp. 619-642
-
-
Efron, B.1
-
12
-
-
84886472543
-
An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability
-
New York: Chapman & Hall.
-
Efron, B., and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, Vol. 57. New York: Chapman & Hall.
-
(1993)
Efron, B., and Tibshirani, R. J.
, vol.57
-
-
-
13
-
-
0031536511
-
Improvements on cross-validation: The .632 bootstrap method
-
Efron, B., and Tibshirani, R. J. (1997). Improvements on cross-validation: The .632 bootstrap method. J. Am. Stat. Assoc., 92: 548-560.
-
(1997)
J. Am. Stat. Assoc.
, vol.92
, pp. 548-560
-
-
Efron, B.1
Tibshirani, R.J.2
-
14
-
-
84950645271
-
The predictive sample reuse method with applications
-
Geisser, S. (1975). The predictive sample reuse method with applications. J. Am. Stat. Assoc., 70: 320-328.
-
(1975)
J. Am. Stat. Assoc.
, vol.70
, pp. 320-328
-
-
Geisser, S.1
-
15
-
-
84950453304
-
Sampling based approaches to calculating marginal densities
-
Gelfand, A., and Smith, A. (1990). Sampling based approaches to calculating marginal densities. J. Am. Stat. Assoc., 85: 398-409.
-
(1990)
J. Am. Stat. Assoc.
, vol.85
, pp. 398-409
-
-
Gelf, A.1
Smith, A.2
-
16
-
-
0004012196
-
Bayesian Data Analysis
-
Boca Raton, FL: Chapman & Hall.
-
Gelman, A., et al. (2003). Bayesian Data Analysis. Boca Raton, FL: Chapman & Hall.
-
(2003)
-
-
Gelman, A.1
-
17
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell., 6: 721-741.
-
(1984)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
18
-
-
84886489957
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
Springer Series in Statistics, 1st ed. New York: Springer.
-
Hastie, T., Tibshirani, R., and Friedman, J. (2003). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 1st ed. New York: Springer.
-
(2003)
Hastie, T., Tibshirani, R., and Friedman, J.
-
-
-
19
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1): 97-109.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
20
-
-
0346840425
-
Detecting recombination with MCMC
-
Husmeier, D., and McGuire, G. (2002). Detecting recombination with MCMC. Bioinformatics, 18: S345-S353.
-
(2002)
Bioinformatics
, vol.18
-
-
Husmeier, D.1
McGuire, G.2
-
21
-
-
37349009294
-
A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification
-
Jiang, W., and Simon, R. (2007). A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Stat. Med., 26: 5320-5334.
-
(2007)
Stat. Med.
, vol.26
, pp. 5320-5334
-
-
Jiang, W.1
Simon, R.2
-
22
-
-
24544459189
-
Breast cancer: Genes are tied to death rates
-
Kolata, G. (2002). Breast cancer: Genes are tied to death rates. New York Times, December 19. Lachenbruch, P. A., and Mickey, M. R. (1968). Estimation of error rates in discriminant analysis. Technometrics, 10: 1-11.
-
(2002)
New York Times, December 19. Lachenbruch, P. A., and Mickey, M. R. (1968). Estimation of error rates in discriminant analysis. Technometrics
, vol.10
, pp. 1-11
-
-
Kolata, G.1
-
23
-
-
84950424966
-
Bayesian models for multiple local sequence alignment and Gibbs sampling strategies
-
Liu, L. S., Neuwald, A. F., and Lawrence, C. E. (1995). Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. JASA, 90: 1156-1170.
-
(1995)
JASA
, vol.90
, pp. 1156-1170
-
-
Liu, L.S.1
Neuwald, A.F.2
Lawrence, C.E.3
-
24
-
-
33745147888
-
Assessing performance of prediction rules in machine learning
-
5 Jun 2006. 7 Oct 2009
-
Martin, R., and Yu, K. (2006). Assessing performance of prediction rules in machine learning. 5 Jun 2006. 7 Oct 2009 ,http://www.futuremedicine.com/doi/abs/10.2217/14622416.7.4.543..
-
(2006)
Martin, R., and Yu, K.
-
-
-
25
-
-
84886535370
-
Discriminant Analysis and Statistical Pattern Recognition
-
New York: Wiley.
-
McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley.
-
(1992)
McLachlan, G. J.
-
-
-
26
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
McLachlan, G. J., Bean, R. W., and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18(3): 413-422.
-
(2002)
Bioinformatics
, vol.18
, Issue.3
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
27
-
-
5744249209
-
Equation of stat calculation by fast computing machines
-
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of stat calculation by fast computing machines. J. Chem. Phys., 21(6): 1087-1092.
-
(1953)
J. Chem. Phys.
, vol.21
, Issue.6
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
28
-
-
23744457899
-
Tree-based multivariate regression and density estimation with right-censored Data
-
Molinaro, A. M., Dudoit, S., and van der Laan, M. J. (2004). Tree-based multivariate regression and density estimation with right-censored Data. J. Multivariate Anal., 90: 154-177.
-
(2004)
J. Multivariate Anal.
, vol.90
, pp. 154-177
-
-
Molinaro, A.M.1
Dudoit, S.2
van der Laan, M.J.3
-
29
-
-
33846849378
-
Prediction error estimation: A comparison of resampling methods
-
Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21: 309-313.
-
(2005)
Bioinformatics
, vol.21
, pp. 309-313
-
-
Molinaro, A.M.1
Simon, R.2
Pfeiffer, R.M.3
-
30
-
-
0037116832
-
Use of proteomic patters in serum to identify ovarian cancer
-
Petricoin, E. F., et al. (2002). Use of proteomic patters in serum to identify ovarian cancer. Lancet, 359: 572-577.
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
-
31
-
-
84886450585
-
New cancer test stirs hope and concern
-
New York Times, February 3.
-
Pollack, A. (2004). New cancer test stirs hope and concern. New York Times, February 3.
-
(2004)
Pollack, A.
-
-
-
32
-
-
26444492840
-
Meeting the challenges of functional genomics: From the laboratory to the clinic
-
Quackenbush, J. (2004). Meeting the challenges of functional genomics: From the laboratory to the clinic. Preclinica, 2: 313-316.
-
(2004)
Preclinica
, vol.2
, pp. 313-316
-
-
Quackenbush, J.1
-
33
-
-
1942438016
-
Rules of evidence for cancer molecular marker discovery and validation
-
Ransohoff, D. F. (2004). Rules of evidence for cancer molecular marker discovery and validation. Nat. Rev. Cancer, 4: 309-313.
-
(2004)
Nat. Rev. Cancer
, vol.4
, pp. 309-313
-
-
Ransohoff, D.F.1
-
34
-
-
13844322072
-
Lessons from controversy: Ovarian cancer screening and serum proteomics
-
Ransohoff, D. F. (2005). Lessons from controversy: Ovarian cancer screening and serum proteomics. JNCI, 97: 315-319.
-
(2005)
JNCI
, vol.97
, pp. 315-319
-
-
Ransohoff, D.F.1
-
35
-
-
84953405534
-
Pattern Recognition and Neural Networks
-
Cambridge: Cambridge University Press.
-
Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
-
(1996)
Ripley, B. D.
-
-
-
36
-
-
0001425735
-
Recovery of information and adjustment for dependent censoring using surrogate markers
-
Robins, J. M., and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. Aids Epidemiology, Methodological Issues: 297-331.
-
(1992)
Aids Epidemiology, Methodological Issues
, pp. 297-331
-
-
Robins, J.M.1
Rotnitzky, A.2
-
37
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
Rosenwald, A., et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med., 346: 1937-1946.
-
(2002)
N. Engl. J. Med.
, vol.346
, pp. 1937-1946
-
-
Rosenwald, A.1
-
38
-
-
0035237805
-
Rich probabilistic models for gene expression
-
Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. (2001). Rich probabilistic models for gene expression. Bioinformatics, 17: S243-S252.
-
(2001)
Bioinformatics
, vol.17
-
-
Segal, E.1
Taskar, B.2
Gasch, A.3
Friedman, N.4
Koller, D.5
-
39
-
-
84886466432
-
Discovering Molecular Pathways from Protein Interaction and Gene Expression Data
-
Oxford: Oxford University Press.
-
Segal, E., Wang, H., and Koller, D. (2003). Discovering Molecular Pathways from Protein Interaction and Gene Expression Data. Oxford: Oxford University Press.
-
(2003)
Segal, E., Wang, H., and Koller, D.
-
-
-
40
-
-
4444367133
-
Biclustering microarray data by Gibbs sampling
-
Sheng, Q., Moreau, Y., and De Moor, B. (2003). Biclustering microarray data by Gibbs sampling. Bioinformatics, 19(Suppl. 2): II196-II205.
-
(2003)
Bioinformatics
, vol.19
, Issue.2
-
-
Sheng, Q.1
Moreau, Y.2
De Moor, B.3
-
41
-
-
0037245343
-
Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
-
Simon, R., Radmacher, M. D., Dobbin, K., and McShane, L. M. (2003). Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Nat. Cancer Inst., 95: 14-18.
-
(2003)
J. Nat. Cancer Inst.
, vol.95
, pp. 14-18
-
-
Simon, R.1
Radmacher, M.D.2
Dobbin, K.3
McShane, L.M.4
-
42
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B, 36: 111-147.
-
(1974)
J. R. Stat. Soc. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
43
-
-
0017336301
-
Asymptotics for and against cross-validation
-
Stone, M. (1977). Asymptotics for and against cross-validation. Biometrika, 64: 29-35.
-
(1977)
Biometrika
, vol.64
, pp. 29-35
-
-
Stone, M.1
-
44
-
-
0003516711
-
An introduction to recursive partitioning using the RPART routine
-
Technical Report 61. Section of Biostatistics, Mayo Clinic, Rochester, NY.
-
Therneau, T., and Atkinson, E. (1997). An introduction to recursive partitioning using the RPART routine. Technical Report 61. Section of Biostatistics, Mayo Clinic, Rochester, NY.
-
(1997)
-
-
Therneau, T.1
Atkinson, E.2
-
45
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58(1): 267-288.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
46
-
-
0037137519
-
A gene expression signature as a predictor of survival in breast cancer
-
van de Vijver, M. J., et al. (2002). A gene expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347(25): 1999-2009.
-
(2002)
N. Engl. J. Med.
, vol.347
, Issue.25
, pp. 1999-2009
-
-
van de Vijver, M.J.1
-
47
-
-
33644860703
-
Bias in error estimation when using cross-validation for model selection
-
Varma, S., and Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7: 91.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 91
-
-
Varma, S.1
Simon, R.2
-
48
-
-
0003895851
-
Modern Applied Statistics with S-PLUS
-
New York: Springer- Verlag.
-
Venables, W. N., and Ripley, B. D. (1994). Modern Applied Statistics with S-PLUS. New York: Springer- Verlag.
-
(1994)
-
-
Venables, W.N.1
Ripley, B.D.2
-
49
-
-
0043192901
-
A gene expressionbased method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
-
Wright, G., Tan, B., Rosenwald, A., Hurt, E. H.,Wiestner, A., and Staudt, L. M. (2003). A gene expressionbased method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. U.S.A., 100: 9991-9996.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 9991-9996
-
-
Wright, G.1
Tan, B.2
Rosenwald, A.3
Hurt, E.H.4
Wiestner, A.5
Staudt, L.M.6
|