메뉴 건너뛰기




Volumn 7, Issue 4, 2006, Pages 543-550

Assessing performance of prediction rules in machine learning

Author keywords

Bootstrap; Machine learning; Monte Carlo simulation; Prediction rule; Split sample; Stochastic gradient boosting; True error

Indexed keywords

ANTINEOPLASTIC AGENT; ANTITHROMBOCYTIC AGENT; PROTEASOME; PROTEASOME INHIBITOR;

EID: 33745147888     PISSN: 14622416     EISSN: 17448042     Source Type: Journal    
DOI: 10.2217/14622416.7.4.543     Document Type: Article
Times cited : (6)

References (13)
  • 1
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L: Statistical modeling: the two cultures. Stat. Sci. 16, 199-231 (2001).
    • (2001) Stat. Sci , vol.16 , pp. 199-231
    • Breiman, L.1
  • 2
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The 0.632+ bootstrap method
    • Efron B, Tibshirani R: Improvements on cross-validation: the 0.632+ bootstrap method. J. Am. Stat. Assoc. 92, 548-560 (1997).
    • (1997) J. Am. Stat. Assoc , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 4
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule
    • Efron B: Estimating the error rate of a prediction rule. J. Am. Stat Assoc. 78, 316-331 (1983).
    • (1983) J. Am. Stat Assoc , vol.78 , pp. 316-331
    • Efron, B.1
  • 5
    • 20444399504 scopus 로고    scopus 로고
    • Boosting an ensemble learning tool for compound classification and QSAR modeling
    • Svetnik V, Wang T, Tong C, Liaw A, Sheridan R, Song Q: Boosting. an ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Model. 45, 786-799 (2005).
    • (2005) J. Chem. Inf. Model , vol.45 , pp. 786-799
    • Svetnik, V.1    Wang, T.2    Tong, C.3    Liaw, A.4    Sheridan, R.5    Song, Q.6
  • 6
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D et al.: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19, 1636-1643 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 7
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer D, Leisch F, Hornik K: The support vector machine under test. Neurocomputing 55, 169-186 (2003),
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 8
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro A, Simon R, Pfeiffer R. Prediction error estimation: a comparison of resampling methods. Bioinformatics 21, 3301-3307 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.3
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189-1232 (1996).
    • (1996) Ann. Stat , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 10
  • 12
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • Shao J: Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486-494 (1993).
    • (1993) J. Am. Stat. Assoc , vol.88 , pp. 486-494
    • Shao, J.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L: Random forests. Machine Learning, 45, 5-32 (2001).
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.