메뉴 건너뛰기




Volumn 36, Issue 1, 2012, Pages 321-333

Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI

Author keywords

Dynamic contrast enhanced breast MRI; Fuzzy c means; Image segmentation; Kernel method; Spatial information

Indexed keywords

ALGORITHM; ARTICLE; BREAST EXAMINATION; DYNAMIC CONTRAST ENHANCED MAGNETIC RESONANCE IMAGING; ENTROPY; FUZZY SYSTEM; KERNEL METHOD; NUCLEAR MAGNETIC RESONANCE IMAGING; PUNISHMENT; SIGNAL NOISE RATIO; BREAST; BREAST TUMOR; FEMALE; FUZZY LOGIC; HUMAN; IMAGE PROCESSING; METHODOLOGY; PATHOLOGY;

EID: 84860251277     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9478-z     Document Type: Article
Times cited : (7)

References (34)
  • 1
    • 84947812228 scopus 로고    scopus 로고
    • Compensation of Spatial Inhomogeneity in MRI Based on a Parametric Bias Estimate
    • Visualization in Biomedical Computing
    • Brechbuhler, C., Gerig, G., and Szekely, G., Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate. In: Proc. 4th Int. Conf. Visualization in Biomedical Computing. Hamburg, Germany, pp. 141-146, 1996. (Pubitemid 126133691)
    • (1996) Lecture Notes in Computer Science , Issue.1131 , pp. 141-146
    • Brechbuehler, C.1    Gerig, G.2    Szekely, G.3
  • 2
    • 29944447410 scopus 로고    scopus 로고
    • A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images
    • DOI 10.1016/j.acra.2005.08.035, PII S1076633205008032
    • Chen, W., Giger, M. L., and Bick, U., A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. Acad. Radiol. 13:63-72, 2006. (Pubitemid 43041894)
    • (2006) Academic Radiology , vol.13 , Issue.1 , pp. 63-72
    • Chen, W.1    Giger, M.L.2    Bick, U.3
  • 3
    • 2442660323 scopus 로고    scopus 로고
    • Computerized interpretation of breast MRI: Investigation of enhancement-variance dynamics
    • DOI 10.1118/1.1695652
    • Chen, W., et al., Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics. Med. Phys. 31:1076-1082, 2004. (Pubitemid 38656778)
    • (2004) Medical Physics , vol.31 , Issue.5 , pp. 1076-1082
    • Chen, W.1    Giger, M.L.2    Lan, L.3    Bick, U.4
  • 4
    • 0027850154 scopus 로고
    • Correction of intensity variations in MR images for computer-aided tissue classification
    • Dawant, B., Zijidenbos, A., and Margolin, R., Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans. Med. Imag. 12:770-781, 1993.
    • (1993) IEEE Trans. Med. Imag. , vol.12 , pp. 770-781
    • Dawant, B.1    Zijidenbos, A.2    Margolin, R.3
  • 6
    • 0031657391 scopus 로고    scopus 로고
    • Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging
    • DOI 10.1118/1.598345
    • Gilhuijs, K. G. A., Giger, M. L., and Bick, U., Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med. Phys. 25:1647-1654, 1998. (Pubitemid 28430885)
    • (1998) Medical Physics , vol.25 , Issue.9 , pp. 1647-1654
    • Gilhuijs, K.G.A.1    Giger, M.L.2    Bick, U.3
  • 8
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • DOI 10.1109/TNN.2002.1000150, PII S1045922702050038
    • Girolami, M., Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13(3):780-784, 2002. (Pubitemid 34669666)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 9
    • 57949088823 scopus 로고    scopus 로고
    • On hard clustering for data with tolerance
    • Hamasuna, Y., et al., On hard clustering for data with tolerance. J. Jap. Soc. Fuzzy Theor. Intell. Info. 20(3):388-398, 2008.
    • (2008) J. Jap. Soc. Fuzzy Theor. Intell. Info. , vol.20 , Issue.3 , pp. 388-398
    • Hamasuna, Y.1
  • 11
    • 0000612344 scopus 로고    scopus 로고
    • Gaussian mixture PDF approximation and fuzzy c-means clustering with entropy regularization
    • Ichihashi, H., Honda, K., and Tani, N., Gaussian mixture PDF approximation and fuzzy c-means clustering with entropy regularization. Proc. of the 4th Asian Fuzzy System Symposium, 217-221, (2000).
    • (2000) Proc. of the 4th Asian Fuzzy System Symposium , pp. 217-221
    • Ichihashi, H.1    Honda, K.2    Tani, N.3
  • 12
    • 50149110607 scopus 로고    scopus 로고
    • A new segmentation system for brain MR images based on fuzzy techniques
    • Kannan, S. R., A new segmentation system for brain MR images based on fuzzy techniques. Appl. Soft Comput. 8(4):1599-1606, 2008.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1599-1606
    • Kannan, S.R.1
  • 13
    • 79951770004 scopus 로고    scopus 로고
    • Effective fuzzy clustering techniques for segmentation of breast MRI
    • (Springer Publication). DOI: 10.1007/s00500-009-0528-8. Published online: 01 November
    • Kannan SR, Sathya A, Ramathilagam S. Effective fuzzy clustering techniques for segmentation of breast MRI. Int J Soft Comput (Springer Publication). DOI: 10.1007/s00500-009-0528-8. Published online: 01 November 2009
    • (2009) Int J Soft Comput
    • Kannan, S.R.1    Sathya, A.2    Ramathilagam, S.3
  • 14
    • 19944403194 scopus 로고    scopus 로고
    • Quantification of breast tissue index from MR data using fuzzy clustering
    • San Francisco, CA, USA, Sep. 1-5
    • Klifa, C., et al., Quantification of breast tissue index from MR data using fuzzy clustering. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA, Sep. 1-5, (2004).
    • (2004) Proceedings of the 26th Annual International Conference of the IEEE EMBS
    • Klifa, C.1
  • 15
    • 38949178111 scopus 로고    scopus 로고
    • Fuzzy C-means clustering based on the gray and spatial feature for image segmentation
    • Li, M., and Li, Y. S., Fuzzy C-means clustering based on the gray and spatial feature for image segmentation. IEEE 1641-1646, 2006.
    • (2006) IEEE , pp. 1641-1646
    • Li, M.1    Li, Y.S.2
  • 16
    • 0002739909 scopus 로고    scopus 로고
    • Fuzzy image clustering incorporating spatial continuity
    • Liew, A. W. C., Leung, S. H., and Lau, W. H., Fuzzy image clustering incorporating spatial continuity. IEE Proc. Vis. Image Signal. Proc. 147(2):185-192, 2000.
    • (2000) IEE Proc. Vis. Image Signal. Proc. , vol.147 , Issue.2 , pp. 185-192
    • Liew, A.W.C.1    Leung, S.H.2    Lau, W.H.3
  • 17
    • 33750094651 scopus 로고    scopus 로고
    • A new image segmentation algorithm based on the fusion of Markov. Random Field and fuzzy c-means clustering
    • Liu, S. Y., Li, X. F., and Li, Z. M., A new image segmentation algorithm based on the fusion of Markov Random Field and fuzzy c-means clustering. IEEE Proc. ISCIT 139-142, 2005.
    • (2005) IEEE Proc. ISCIT , pp. 139-142
    • Liu, S.Y.1    Li, X.F.2    Li, Z.M.3
  • 18
    • 0000309136 scopus 로고    scopus 로고
    • Gaussian clustering method based on maximum-fuzzy-entropy interpretation
    • PII S0165011497001267
    • Li, R. P., and Mukaidono, M., Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets Syst. 102:253-258, 1999. (Pubitemid 129510836)
    • (1999) Fuzzy Sets and Systems , vol.102 , Issue.2 , pp. 253-258
    • Li, R.-P.1    Mukaidono, M.2
  • 19
    • 67649213164 scopus 로고    scopus 로고
    • Statistical mechanical analysis of fuzzy clustering based on fuzzy entropy
    • Yasuda, M., Furuhash, T., and Okuma, S., Statistical mechanical analysis of fuzzy clustering based on fuzzy entropy. IEICE Trans. Inf. Syst. E90-D(6):883-888, 2007.
    • (2007) IEICE Trans. Inf. Syst. , vol.E90-D , Issue.6 , pp. 883-888
    • Yasuda, M.1    Furuhash, T.2    Okuma, S.3
  • 20
    • 0032932780 scopus 로고    scopus 로고
    • A fuzzy clustering based segmentation system as support to diagnosis in medical imaging
    • DOI 10.1016/S0933-3657(98)00069-4, PII S0933365798000694
    • Masulli, F., and Schenone, A., A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artif. Intell. Med. 16(2):129-147, 1999. (Pubitemid 29236496)
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 129-147
    • Masulli, F.1    Schenone, A.2
  • 22
    • 0030916382 scopus 로고    scopus 로고
    • Dynamic MR imaging of invasive breast cancer: Correlation with tumour grade and other histological factors
    • Mussurakis, S., Buckley, D., Horsman, A., and Dynamic, M. R., imaging of invasive breast cancer: correlation with tumour grade and other histological factors. Br. J. Radiol. 70:446-451, 1997. (Pubitemid 27229263)
    • (1997) British Journal of Radiology , vol.70 , Issue.MAY , pp. 446-451
    • Mussurakis, S.1    Buckley, D.L.2    Horsman, A.3
  • 24
    • 0026842556 scopus 로고
    • An adaptive clustering algorithm for image segmentation
    • Pappas, T. N., An adaptive clustering algorithm for image segmentation. IEEE Trans. Signal Process. 40:901-914, 1992.
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 901-914
    • Pappas, T.N.1
  • 25
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • DOI 10.1016/S0167-8655(98)00121-4, PII S0167865598001214
    • Pham, D. L., and Prince, J. L., An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 20(1):57-68, 1999. (Pubitemid 29430718)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.1 , pp. 57-68
    • Pham, D.L.1    Prince, J.L.2
  • 26
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • DOI 10.1109/42.802752
    • Pham, D. L., and Prince, J. L., Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imag. 18(9):737-752, 1999. (Pubitemid 30519193)
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.9 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 27
    • 0001143455 scopus 로고    scopus 로고
    • An automated technique for statistical characterization of brain tissues in magnetic resonance imaging
    • Pham, D. L., et al., An automated technique for statistical characterization of brain tissues in magnetic resonance imaging. Int. J. Pattern Recognit. Artif. Intell. 11(8):1189-1211, 1997.
    • (1997) Int. J. Pattern Recognit. Artif. Intell. , vol.11 , Issue.8 , pp. 1189-1211
    • Pham, D.L.1
  • 28
    • 0032070619 scopus 로고    scopus 로고
    • Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
    • PII S1083442798028148
    • Tolias, Y. A., and Panas, S. M., Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans. Syst. Man Cybernet. Part A 28 (3):359-369, 1998. (Pubitemid 128752068)
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans. , vol.28 , Issue.3 , pp. 359-369
    • Tolias, Y.A.1    Panas, S.M.2
  • 29
    • 0032187761 scopus 로고    scopus 로고
    • On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system
    • Tolias, Y. A., and Panas, S. M., On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. IEEE Signal Process. Lett. 5(10):245-247, 1998. (Pubitemid 128556765)
    • (1998) IEEE Signal Processing Letters , vol.5 , Issue.10 , pp. 245-247
    • Tolias, Y.A.1    Panas, S.M.2
  • 30
    • 0030215026 scopus 로고    scopus 로고
    • Adaptive segmentation of MRI data
    • Wells, W. M., et al., Adaptive segmentation of MRI data. IEEE Trans. Med. Imag. 15:429-442, 1996.
    • (1996) IEEE Trans. Med. Imag. , vol.15 , pp. 429-442
    • Wells, W.M.1
  • 31
    • 84856335325 scopus 로고    scopus 로고
    • Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation
    • Xi'an, 2-5 November 0-7803-7865-2/03/2003 IEEE
    • Zhang, D. Q., et al., Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, 2-5 November 2003 0-7803-7865-2/03/2003 IEEE.
    • (2003) Proceedings of the Second International Conference on Machine Learning and Cybernetics
    • Zhang, D.Q.1
  • 32
    • 0842300534 scopus 로고    scopus 로고
    • Clustering incomplete data using kernel-based fuzzy c-means algorithm
    • 1370-4621
    • Zhang, D. Q., and Chen, S. C., Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neural Process. Lett. 18 (3):155-162, 2003. 1370-4621.
    • (2003) Neural Process. Lett. , vol.18 , Issue.3 , pp. 155-162
    • Zhang, D.Q.1    Chen, S.C.2
  • 33
    • 4444347719 scopus 로고    scopus 로고
    • A novel kernelized fuzzy C-means algorithm with application in medical image segmentation
    • Zhang, D. Q., and Chen, S. C., A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif. Intell. Med. 1(32):37-50, 2004.
    • (2004) Artif. Intell. Med. , vol.1 , Issue.32 , pp. 37-50
    • Zhang, D.Q.1    Chen, S.C.2
  • 34
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • Zhang, D. Q., and Chen, S. C., Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybernet. Part B - Cybernet. 34(4):1907-1916, 2004.
    • (2004) IEEE Trans. Syst. Man Cybernet. Part B - Cybernet. , vol.34 , Issue.4 , pp. 1907-1916
    • Zhang, D.Q.1    Chen, S.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.