메뉴 건너뛰기




Volumn , Issue , 2010, Pages 359-364

Distributional similarity vs. PU learning for entity set expansion

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIC TECHNIQUES; DISTRIBUTIONAL SIMILARITIES; LEARNING TECHNIQUES; POSITIVE AND UNLABELED LEARNING; SET EXPANSIONS;

EID: 84860009652     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (31)
  • 1
    • 84858390207 scopus 로고    scopus 로고
    • A study on similarity and relatedness using distributional and WordNet-based approaches
    • Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., and Soroa, A. 2009. A study on similarity and relatedness using distributional and WordNet-based approaches. NAACL HLT.
    • (2009) NAACL HLT
    • Agirre, E.1    Alfonseca, E.2    Hall, K.3    Kravalova, J.4    Pasca, M.5    Soroa, A.6
  • 2
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • 1998
    • Blum, A. and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In Proc. of Computational Learning Theory, pp. 92-100, 1998.
    • (1998) Proc. of Computational Learning Theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 3
    • 84867919822 scopus 로고
    • Transformation-Based error-Driven learning and natural language processing: A case study in part of speech tagging
    • Brill, E. 1995. Transformation-Based error-Driven learning and natural language processing: a case study in part of speech tagging. Computational Linguistics.
    • (1995) Computational Linguistics
    • Brill, E.1
  • 4
    • 83055165536 scopus 로고    scopus 로고
    • Collective information extraction with relational Markov Networks
    • Bunescu, R. and Mooney, R. 2004. Collective information extraction with relational Markov Networks. ACL.
    • (2004) ACL
    • Bunescu, R.1    Mooney, R.2
  • 5
    • 85011015609 scopus 로고    scopus 로고
    • Entity-Rank: Searching entities directly and holistically
    • Cheng T., Yan X. and Chang C. K. 2007. Entity-Rank: searching entities directly and holistically. VLDB.
    • (2007) VLDB
    • Cheng, T.1    Yan, X.2    Chang, C.K.3
  • 6
    • 0345007542 scopus 로고    scopus 로고
    • Name entity recognition: A maximum entropy approach using global information
    • Chieu, H.L. and Ng, H. Tou. 2002. Name entity recognition: a maximum entropy approach using global information. In The 6th Workshop on Very Large Corpora.
    • (2002) The 6th Workshop on Very Large Corpora
    • Chieu, H.L.1    Ng, H.T.2
  • 7
    • 84880862059 scopus 로고    scopus 로고
    • Locating complex named entities in Web Text
    • Downey, D., Broadhead, M. and Etzioni, O. 2007. Locating complex named entities in Web Text. IJCAI.
    • (2007) IJCAI
    • Downey, D.1    Broadhead, M.2    Etzioni, O.3
  • 8
    • 58149180961 scopus 로고    scopus 로고
    • Learning classifiers from only positive and unlabeled data
    • Elkan, C. and Noto, K. 2008. Learning classifiers from only positive and unlabeled data. KDD, 213-220.
    • (2008) KDD , pp. 213-220
    • Elkan, C.1    Noto, K.2
  • 12
    • 84860499325 scopus 로고    scopus 로고
    • Scaling distributional similarity to large corpora
    • Gorman, J. and Curran, J. R. 2006. Scaling distributional similarity to large corpora. ACL.
    • (2006) ACL
    • Gorman, J.1    Curran, J.R.2
  • 13
    • 0002139970 scopus 로고
    • Distributional structure
    • Katz, J. J. (ed.), Oxford University Press
    • Harris, Z. Distributional Structure. 1985. In: Katz, J. J. (ed.), The philosophy of linguistics. Oxford University Press.
    • (1985) The Philosophy of Linguistics
    • Harris, Z.1
  • 14
    • 33845587610 scopus 로고    scopus 로고
    • A simple Bayesian framework for content-based image retrieval
    • Heller, K. and Ghahramani, Z. 2006. A simple Bayesian framework for content-based image retrieval. CVPR.
    • (2006) CVPR
    • Heller, K.1    Ghahramani, Z.2
  • 15
    • 1642296635 scopus 로고    scopus 로고
    • Efficient support vector classifiers for named entity recognition
    • Isozaki, H. and Kazawa, H. 2002. Efficient support vector classifiers for named entity recognition. COLING.
    • (2002) COLING
    • Isozaki, H.1    Kazawa, H.2
  • 16
    • 63449136023 scopus 로고    scopus 로고
    • Exploiting domain structure for named entity recognition
    • Jiang, J. and Zhai, C. 2006. Exploiting domain structure for named entity recognition. HLTNAACL.
    • (2006) HLTNAACL
    • Jiang, J.1    Zhai, C.2
  • 17
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty J., McCallum A., and Pereira F. 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 18
    • 85149114506 scopus 로고    scopus 로고
    • Measures of distributional similarity
    • Lee, L. 1999. Measures of distributional similarity. ACL.
    • (1999) ACL
    • Lee, L.1
  • 19
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • Lee, W-S. and Liu, B. 2003. Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression. ICML.
    • (2003) ICML
    • Lee, W.-S.1    Liu, B.2
  • 20
    • 84880798303 scopus 로고    scopus 로고
    • Learning to classify texts using positive and unlabeled data
    • Li, X., Liu, B. 2003. Learning to classify texts using positive and unlabeled data, IJCAI.
    • (2003) IJCAI
    • Li, X.1    Liu, B.2
  • 21
    • 84880896131 scopus 로고    scopus 로고
    • Learning to identify unexpected instances in the test sSet
    • Li, X., Liu, B., Ng, S. 2007. Learning to identify unexpected instances in the test sSet. IJCAI.
    • (2007) IJCAI
    • Li, X.1    Liu, B.2    Ng, S.3
  • 22
    • 0002557709 scopus 로고    scopus 로고
    • Automatic retrieval and clustering of similar words
    • Lin, D. 1998. Automatic retrieval and clustering of similar words. COLING/ACL.
    • (1998) COLING/ACL
    • Lin, D.1
  • 23
    • 0742311711 scopus 로고    scopus 로고
    • Partially supervised text classification
    • Liu, B, Lee, W-S, Yu, P. S, and Li, X. 2002. Partially supervised text classification. ICML, 387-394.
    • (2002) ICML , pp. 387-394
    • Liu, B.1    Lee, W.-S.2    Yu, P.S.3    Li, X.4
  • 24
    • 78149306870 scopus 로고    scopus 로고
    • Building text classifiers using positive and unlabeled examples
    • Liu, B, Dai, Y., Li, X., Lee, W-S., and Yu. P. 2003. Building text classifiers using positive and unlabeled examples. ICDM, 179-188.
    • (2003) ICDM , pp. 179-188
    • Liu, B.1    Dai, Y.2    Li, X.3    Lee, W.-S.4    Yu., P.5
  • 26
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam, K., McCallum, A., Thrun, S. and Mitchell, T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3), 103-134.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 28
    • 70350607224 scopus 로고    scopus 로고
    • Names and similarities on the web: Fast extraction in the fast lane
    • Paşca, M. Lin, D. Bigham, J. Lifchits, A. Jain, A. 2006. Names and similarities on the web: fast extraction in the fast lane. ACL.
    • (2006) ACL
    • Lin, P.M.1    Bigham, D.2    Lifchits, J.3    Jain A, A.4
  • 30
    • 67049109676 scopus 로고    scopus 로고
    • Iterative set expansion of named entities using the web
    • Wang, R. C. and Cohen, W. W. 2008. Iterative set expansion of named entities using the web. ICDM.
    • (2008) ICDM
    • Wang, R.C.1    Cohen, W.W.2
  • 31
    • 0011399035 scopus 로고    scopus 로고
    • PEBL: Positive example based learning for Web page classification using SVM
    • Yu, H., Han, J., K. Chang. 2002. PEBL: Positive example based learning for Web page classification using SVM. KDD, 239-248.
    • (2002) KDD , pp. 239-248
    • Yu, H.1    Han, J.2    Chang, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.