메뉴 건너뛰기




Volumn 11, Issue 1-2, 2011, Pages 19-27

Gene expression data analysis using multiobjective clustering improved with SVM based ensemble

Author keywords

cluster ensemble; microarray gene expression data; Multiobjective clustering; support vector machine

Indexed keywords

ARTICLE; CELL CYCLE; CLUSTER ANALYSIS; DNA MICROARRAY; FIBROBLAST; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENETIC DATABASE; GENETICS; HUMAN; METHODOLOGY; PHYSIOLOGY; SACCHAROMYCES CEREVISIAE; SUPPORT VECTOR MACHINE;

EID: 84859528859     PISSN: 14343207     EISSN: None     Source Type: Journal    
DOI: 10.3233/ISB-2012-0441     Document Type: Article
Times cited : (5)

References (21)
  • 1
    • 33749428430 scopus 로고    scopus 로고
    • Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes
    • S. Datta and S. Datta. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC Bioinformatics, 7(397), 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 397
    • Datta, S.1    Datta, S.2
  • 2
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • DOI 10.1093/bioinformatics/bti517
    • J. Handl, J. Knowles and D.B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15):3201-3212, 2005. (Pubitemid 41418432)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 3
    • 67649403094 scopus 로고    scopus 로고
    • Towards improving fuzzy clustering using support vector machine: Application to gene expression data
    • A. Mukhopadhyay and U. Maulik. Towards improving fuzzy clustering using support vector machine: Application to gene expression data. Pattern Recognition, 42(11):2744-2763, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2744-2763
    • Mukhopadhyay, A.1    Maulik, U.2
  • 4
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    • U. Maulik and A. Mukhopadhyay. Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data. Computers and Operations Research, 37(8):1369-1380, 2009.
    • (2009) Computers and Operations Research , vol.37 , Issue.8 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 5
    • 84947926042 scopus 로고    scopus 로고
    • Afast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II in proceedings of the parallel problem solving from nature VI conference springer
    • Paris, France
    • K.Deb, S.Agrawal, A. Pratap and T.Meyarivan. Afast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature VI Conference, Springer. Lecture Notes in Computer Science No. 1917, pages 849-858. Paris, France, 2000.
    • (2000) Lecture Notes in Computer Science , Issue.1917 , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 6
    • 34247466658 scopus 로고    scopus 로고
    • Multiobjective genetic clustering for pixel classification in remote sensing imagery
    • DOI 10.1109/TGRS.2007.892604
    • S. Bandyopadhyay, U.Maulik and A. Mukhopadhyay. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens, 45(5):1506-1511, 2007. (Pubitemid 46652348)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1506-1511
    • Bandyopadhyay, S.1    Maulik, U.2    Mukhopadhyay, A.3
  • 7
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • DOI 10.1093/bioinformatics/btm418
    • S. Bandyopadhyay, A. Mukhopadhyay and U. Maulik. An improved algorithm for clustering gene expression data. Bioinformatics, 23(21):2859-2865, 2007. (Pubitemid 350162891)
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 10
    • 63149099143 scopus 로고    scopus 로고
    • Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier
    • A. Mukhopadhyay and U. Maulik. Unsupervised pixel classification in satellite imagery using multiobjective fuzzy clustering combined with SVM classifier. IEEE Transactions on Geoscience and Remote Sensing, 47(4):1132-1138, 2009.
    • (2009) Transactions on Geoscience and Remote Sensing IEEE , vol.47 , Issue.4 , pp. 1132-1138
    • Mukhopadhyay, A.1    Maulik, U.2
  • 11
    • 62949240361 scopus 로고    scopus 로고
    • Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
    • U. Maulik, A. Mukhopadhyay and S. Bandyopadhyay. Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics, 10(27), 2009.
    • (2009) BMC Bioinformatics , vol.10 , pp. 27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 18
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification
    • DOI 10.1109/TGRS.2003.810924
    • U. Maulik and S. Bandyopadhyay. Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans Geosci Remote Sens, 41(5):1075-1081, 2003. (Pubitemid 351466569)
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 PART 1 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 21
    • 1542399989 scopus 로고    scopus 로고
    • FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes
    • DOI 10.1093/bioinformatics/btg455
    • F. Al-Shahrour, R. Diaz-Uriarte and J. Dopazo. FatiGO: AWeb tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics, 20(4):578-580, 2004. (Pubitemid 38344339)
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 578-580
    • Al-Shahrour, F.1    Diaz-Uriarte, R.2    Dopazo, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.