-
1
-
-
48249103503
-
Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
-
Routh A., Sandin S., Rhodes D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA 2008, 105:8872-8877.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 8872-8877
-
-
Routh, A.1
Sandin, S.2
Rhodes, D.3
-
2
-
-
0038721220
-
H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo
-
Fan Y., Nikitina T., Morin-Kensicki E.M., Zhao J., Magnuson T.R., Woodcock C.L., Skoultchi A.I. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell. Biol. 2003, 23:4559-4572.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 4559-4572
-
-
Fan, Y.1
Nikitina, T.2
Morin-Kensicki, E.M.3
Zhao, J.4
Magnuson, T.R.5
Woodcock, C.L.6
Skoultchi, A.I.7
-
3
-
-
0019157001
-
The structure of histone H1 and its location in chromatin
-
Allan J., Hartman P.G., Crane-Robinson C., Aviles F.X. The structure of histone H1 and its location in chromatin. Nature 1980, 288:675-679.
-
(1980)
Nature
, vol.288
, pp. 675-679
-
-
Allan, J.1
Hartman, P.G.2
Crane-Robinson, C.3
Aviles, F.X.4
-
4
-
-
44649186259
-
The histone H1 family: specific members, specific functions?
-
Izzo A., Kamieniarz K., Schneider R. The histone H1 family: specific members, specific functions?. Biol. Chem. 2008, 389:333-343.
-
(2008)
Biol. Chem.
, vol.389
, pp. 333-343
-
-
Izzo, A.1
Kamieniarz, K.2
Schneider, R.3
-
5
-
-
2442574861
-
The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo
-
Hendzel M.J., Lever M.A., Crawford E., Th'ng J.P. The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J. Biol. Chem. 2004, 279:20028-20034.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20028-20034
-
-
Hendzel, M.J.1
Lever, M.A.2
Crawford, E.3
Th'ng, J.P.4
-
6
-
-
79955041234
-
Structure of the H1 C-terminal domain and function in chromatin condensation
-
Caterino T.L., Hayes J.J. Structure of the H1 C-terminal domain and function in chromatin condensation. Biochem. Cell. Biol. 2011, 89:35-44.
-
(2011)
Biochem. Cell. Biol.
, vol.89
, pp. 35-44
-
-
Caterino, T.L.1
Hayes, J.J.2
-
7
-
-
10944229082
-
Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb)
-
Lee L.Y., Liang X., Hook M., Brown E.L. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J. Biol. Chem. 2004, 279:50710-50716.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 50710-50716
-
-
Lee, L.Y.1
Liang, X.2
Hook, M.3
Brown, E.L.4
-
8
-
-
0027385167
-
Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo
-
Almouzni G., Wolffe A.P. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 1993, 7:2033-2047.
-
(1993)
Genes Dev.
, vol.7
, pp. 2033-2047
-
-
Almouzni, G.1
Wolffe, A.P.2
-
9
-
-
0027272359
-
Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis
-
Hock R., Moorman A., Fischer D., Scheer U. Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis. Dev. Biol. 1993, 158:510-522.
-
(1993)
Dev. Biol.
, vol.158
, pp. 510-522
-
-
Hock, R.1
Moorman, A.2
Fischer, D.3
Scheer, U.4
-
10
-
-
0027429520
-
Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type
-
Dimitrov S., Almouzni G., Dasso M., Wolffe A.P. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type. Dev. Biol. 1993, 160:214-227.
-
(1993)
Dev. Biol.
, vol.160
, pp. 214-227
-
-
Dimitrov, S.1
Almouzni, G.2
Dasso, M.3
Wolffe, A.P.4
-
11
-
-
33947260172
-
Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo
-
Belikov S., Astrand C., Wrange O. Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo. Mol. Cell. Biol. 2007, 27:2398-2410.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 2398-2410
-
-
Belikov, S.1
Astrand, C.2
Wrange, O.3
-
12
-
-
0030477865
-
An indelible lineage marker for Xenopus using a mutated green fluorescent protein
-
Zernicka-Goetz M., Pines J., Ryan K., Siemering K.R., Haseloff J., Evans M.J., Gurdon J.B. An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 1996, 122:3719-3724.
-
(1996)
Development
, vol.122
, pp. 3719-3724
-
-
Zernicka-Goetz, M.1
Pines, J.2
Ryan, K.3
Siemering, K.R.4
Haseloff, J.5
Evans, M.J.6
Gurdon, J.B.7
-
13
-
-
67651048598
-
Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter
-
Astrand C., Belikov S., Wrange O. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. Exp. Cell Res. 2009, 315:2604-2615.
-
(2009)
Exp. Cell Res.
, vol.315
, pp. 2604-2615
-
-
Astrand, C.1
Belikov, S.2
Wrange, O.3
-
14
-
-
70350450946
-
FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter
-
Belikov S., Astrand C., Wrange O. FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter. Mol. Cell. Biol. 2009, 29:5413-5425.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5413-5425
-
-
Belikov, S.1
Astrand, C.2
Wrange, O.3
-
15
-
-
0348166012
-
Chromatin assembly in vitro with purified recombinant ACF and NAP-1
-
Fyodorov D.V., Kadonaga J.T. Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol. 2003, 371:499-515.
-
(2003)
Methods Enzymol.
, vol.371
, pp. 499-515
-
-
Fyodorov, D.V.1
Kadonaga, J.T.2
-
16
-
-
0022446807
-
Roles of H1 domains in determining higher order chromatin structure and H1 location
-
Allan J., Mitchell T., Harborne N., Bohm L., Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. J. Mol. Biol. 1986, 187:591-601.
-
(1986)
J. Mol. Biol.
, vol.187
, pp. 591-601
-
-
Allan, J.1
Mitchell, T.2
Harborne, N.3
Bohm, L.4
Crane-Robinson, C.5
-
17
-
-
84859434214
-
The N- and C-terminal domains determine the differential nucleosomal binding geometry and affinity of linker histone isotypes H10 and H1C
-
in press.
-
P. Vyas, D.T. Brown, The N- and C-terminal domains determine the differential nucleosomal binding geometry and affinity of linker histone isotypes H10 and H1C, J. Biol. Chem. (2012), in press.
-
(2012)
J. Biol. Chem.
-
-
Vyas, P.1
Brown, D.T.2
-
18
-
-
0022397754
-
Sequence conservation in the N-terminal domain of histone H1
-
Bohm L., Mitchell T.C. Sequence conservation in the N-terminal domain of histone H1. FEBS Lett. 1985, 193:1-4.
-
(1985)
FEBS Lett.
, vol.193
, pp. 1-4
-
-
Bohm, L.1
Mitchell, T.C.2
-
19
-
-
1542305640
-
Identification of specific functional subdomains within the linker histone H10 C-terminal domain
-
Lu X., Hansen J.C. Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J. Biol. Chem. 2004, 279:8701-8707.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 8701-8707
-
-
Lu, X.1
Hansen, J.C.2
-
20
-
-
58549094957
-
Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder
-
Lu X., Hamkalo B., Parseghian M.H., Hansen J.C. Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 2009, 48:164-172.
-
(2009)
Biochemistry
, vol.48
, pp. 164-172
-
-
Lu, X.1
Hamkalo, B.2
Parseghian, M.H.3
Hansen, J.C.4
-
21
-
-
77950548496
-
Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis
-
Stasevich T.J., Mueller F., Brown D.T., McNally J.G. Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J. 2010, 29:1225-1234.
-
(2010)
EMBO J.
, vol.29
, pp. 1225-1234
-
-
Stasevich, T.J.1
Mueller, F.2
Brown, D.T.3
McNally, J.G.4
-
22
-
-
77954238056
-
Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0)
-
George E.M., Izard T., Anderson S.D., Brown D.T. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0). J. Biol. Chem. 2010, 285:20891-20896.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 20891-20896
-
-
George, E.M.1
Izard, T.2
Anderson, S.D.3
Brown, D.T.4
-
23
-
-
23044489675
-
H1 family histones in the nucleus, Control of binding and localization by the C-terminal domain
-
Th'ng J.P., Sung R., Ye M., Hendzel M.J. H1 family histones in the nucleus, Control of binding and localization by the C-terminal domain. J. Biol. Chem. 2005, 280:27809-27814.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 27809-27814
-
-
Th'ng, J.P.1
Sung, R.2
Ye, M.3
Hendzel, M.J.4
-
24
-
-
70349655631
-
Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF
-
Clausell J., Happel N., Hale T.K., Doenecke D., Beato M. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 2009, 4:e0007243.
-
(2009)
PLoS One
, vol.4
-
-
Clausell, J.1
Happel, N.2
Hale, T.K.3
Doenecke, D.4
Beato, M.5
|