메뉴 건너뛰기




Volumn 6, Issue 1, 2012, Pages

Isolation-based anomaly detection

Author keywords

Algorithms; Design; Experimentation

Indexed keywords

ANOMALY DETECTION; DATA POINTS; EMPIRICAL EVALUATIONS; EXPERIMENTATION; HIGH-DIMENSIONAL PROBLEMS; ONE CLASS-SVM; PROCESSING TIME; RANDOM FORESTS; TRAINING SAMPLE;

EID: 84859412430     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/2133360.2133363     Document Type: Article
Times cited : (1558)

References (45)
  • 2
    • 67149118905 scopus 로고    scopus 로고
    • Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets
    • ANGIULLI, F. AND FASSETTI, F. 2009. Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets. ACM Trans. Knowl. Discov. Data 3, 1, 1-57.
    • (2009) ACM Trans. Knowl. Discov. Data 3 , vol.1 , pp. 1-57
    • Angiulli, F.1    Fassetti, F.2
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • BREIMAN, L. 2001. Random forests. Mach. Learn. 45, 1, 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • DOI 10.1023/A:1010920819831
    • HAND, D. J. AND TILL, R. J. 2001. A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45, 2, 171-186. (Pubitemid 33635984)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 13
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • HE, Z., XU, X., AND DENG, S. 2003. Discovering cluster-based local outliers. Patt. Recog. Lett. 24, 9-10, 1641-1650.
    • (2003) Patt. Recog. Lett. , vol.24 , Issue.9-10 , pp. 1641-1650
    • Z, H.E.1    X, X.U.2    Deng, S.3
  • 14
    • 33646512600 scopus 로고    scopus 로고
    • A unified subspace outlier ensemble framework for outlier detection
    • W. Fan, Z. Wu, and J. Yang Eds., Lecture Notes in Computer Science, Springer
    • HE, Z., DENG, S., AND XU, X. 2005. A unified subspace outlier ensemble framework for outlier detection. In Proceedings of the International Conference on Web-Age Information Management (WAIM). W. Fan, Z. Wu, and J. Yang Eds., Lecture Notes in Computer Science, vol. 3739, Springer, 632-637.
    • (2005) Proceedings of the International Conference on Web-Age Information Management (WAIM) , vol.3739 , pp. 632-637
    • Z, H.E.1    Deng, S.2    X, X.U.3
  • 17
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • KNORR, E. M., NG, R. T., AND TUCAKOV, V. 2000. Distance-based outliers: Algorithms and applications. VLDB J. 8, 3-4, 237-253.
    • (2000) VLDB J. , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    T, N.G.R.2    Tucakov, V.3
  • 24
    • 0033147626 scopus 로고    scopus 로고
    • Multivariate analysis by data depth: Descriptive statistics, graphics and inference
    • LIU, R. Y., PARELIUS, J. M., AND SINGH, K. 1999. Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Stat. 27, 3, 783-840.
    • (1999) Ann. Stat. , vol.27 , Issue.3 , pp. 783-840
    • Liu, R.Y.1    Parelius, J.M.2    Singh, K.3
  • 30
    • 0030344143 scopus 로고    scopus 로고
    • Identification of outliers in multivariate data
    • ROCKE, D. M. AND WOODRUFF, D. L. 1996. Identification of outliers in multivariate data. J. Amer. Statist. Soc. 91, 435, 1047-1061.
    • (1996) J. Amer. Statist. Soc. , vol.91 , Issue.435 , pp. 1047-1061
    • Rocke, D.M.1    Woodruff, D.L.2
  • 32
    • 0344002025 scopus 로고
    • On the average shape of binary trees
    • RUSKEY, F. 1980. On the average shape of binary trees. SIAM J. Alg. Disc. Meth. 1, 1, 43-50.
    • (1980) SIAM J. Alg. Disc. Meth. , vol.1 , Issue.1 , pp. 43-50
    • Ruskey, F.1
  • 33
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • SCH ÖLKOPF, B., PLATT, J. C., SHAWE-TAYLOR, J. C., SMOLA, A. J., AND WILLIAMSON, R. C. 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13, 7, 1443-1471. (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 34
    • 33645573203 scopus 로고    scopus 로고
    • Unsupervised learning with random forest predictors
    • DOI 10.1198/106186006X94072
    • SHI, T. AND HORVATH, S. 2006. Unsupervised learning with random forest predictors. J. Computat. Graph. Stat. 15, 1, 118-138. (Pubitemid 43514414)
    • (2006) Journal of Computational and Graphical Statistics , vol.15 , Issue.1 , pp. 118-138
    • Shi, T.1    Horvath, S.2
  • 35
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: Visualizing classifier performance in R
    • DOI 10.1093/bioinformatics/bti623
    • SING, T., SANDER, O., BEERENWINKEL, N., AND LENGAUER, T. 2005. ROCR: Visualizing classifier performance in r. Bioinformatics 21, 20, 3940-3941. (Pubitemid 41535515)
    • (2005) Bioinformatics , vol.21 , Issue.20 , pp. 3940-3941
    • Sing, T.1    Sander, O.2    Beerenwinkel, N.3    Lengauer, T.4
  • 39
    • 33749567862 scopus 로고    scopus 로고
    • Mining distance-based outliers from large databases in any metric space
    • KDD 2006: Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • TAO, Y., XIAO, X., AND ZHOU, S. 2006. Mining distance-based outliers from large databases in any metric space. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM, New York, 394-403. (Pubitemid 44535536)
    • (2006) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , vol.2006 , pp. 394-403
    • Tao, Y.1    Xiao, X.2    Zhou, S.3
  • 40
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • TAX, D. M. J. AND DUIN, R. P. W. 2004. Support vector data description. Mach. Learn. 54, 1, 45-66.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 45
    • 77951184519 scopus 로고    scopus 로고
    • Filtering and refinement: A two-stage approach for efficient and effective anomaly detection
    • IEEE Computer Society Press
    • YU, X., TANG, L. A., AND HAN, J. 2009. Filtering and refinement: A two-stage approach for efficient and effective anomaly detection. In Proceedings of the 9th IEEE International Conference on Data Mining (ICDM). IEEE Computer Society Press, 617-626.
    • (2009) Proceedings of the 9th IEEE International Conference on Data Mining (ICDM). , pp. 617-626
    • X, Y.U.1    Tang, L.A.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.