-
3
-
-
0026634082
-
The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase
-
Panaretou B., Piper P.W. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur. J. Biochem. 1992, 206:635-640.
-
(1992)
Eur. J. Biochem.
, vol.206
, pp. 635-640
-
-
Panaretou, B.1
Piper, P.W.2
-
4
-
-
0028151517
-
Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold
-
Piper P.W., Talreja K., Panaretou B., Moradas-Ferreira P., Byrne K., Praekelt U.M., Meacock P., Recnacq M., Boucherie H. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 1994, 140:3031-3038.
-
(1994)
Microbiology
, vol.140
, pp. 3031-3038
-
-
Piper, P.W.1
Talreja, K.2
Panaretou, B.3
Moradas-Ferreira, P.4
Byrne, K.5
Praekelt, U.M.6
Meacock, P.7
Recnacq, M.8
Boucherie, H.9
-
5
-
-
0032896994
-
Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors
-
Seymour I.J., Piper P.W. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 1999, 145:231-239.
-
(1999)
Microbiology
, vol.145
, pp. 231-239
-
-
Seymour, I.J.1
Piper, P.W.2
-
6
-
-
0032960606
-
The oligosaccharyl transferase complex from yeast
-
Knauer R., Lehle L. The oligosaccharyl transferase complex from yeast. Biochim. Biophys. Acta 1999, 1426:259-273.
-
(1999)
Biochim. Biophys. Acta
, vol.1426
, pp. 259-273
-
-
Knauer, R.1
Lehle, L.2
-
7
-
-
33751508817
-
N-glycan processing in ER quality control
-
Ruddock L.W., Molinari M. N-glycan processing in ER quality control. J. Cell Sci. 2006, 119:4373-4380.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4373-4380
-
-
Ruddock, L.W.1
Molinari, M.2
-
8
-
-
79957741005
-
Protein N-glycosylation, protein folding, and protein quality control
-
Roth J., Zuber C., Park S., Jang I., Lee Y., Kysela K.G., Fourn V.L., Santimaria R., Guhl B., Cho J.W. Protein N-glycosylation, protein folding, and protein quality control. Mol. Cells 2010, 30:497-506.
-
(2010)
Mol. Cells
, vol.30
, pp. 497-506
-
-
Roth, J.1
Zuber, C.2
Park, S.3
Jang, I.4
Lee, Y.5
Kysela, K.G.6
Fourn, V.L.7
Santimaria, R.8
Guhl, B.9
Cho, J.W.10
-
9
-
-
27944459619
-
Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit
-
Schwarz M., Knauer R., Lehle L. Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett. 2005, 579:6564-6568.
-
(2005)
FEBS Lett.
, vol.579
, pp. 6564-6568
-
-
Schwarz, M.1
Knauer, R.2
Lehle, L.3
-
10
-
-
61649089751
-
Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency
-
Schulz B., Aebi M. Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell. Proteomics 2009, 8:357-364.
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 357-364
-
-
Schulz, B.1
Aebi, M.2
-
11
-
-
33750468309
-
Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases
-
Lehle L., Strahl S., Tanner W. Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew. Chem. Int. Ed. 1997, 45:6802-6818.
-
(1997)
Angew. Chem. Int. Ed.
, vol.45
, pp. 6802-6818
-
-
Lehle, L.1
Strahl, S.2
Tanner, W.3
-
12
-
-
0035937505
-
Intracellular functions of N-linked glycans
-
Helenius A., Aebi M. Intracellular functions of N-linked glycans. Science 2001, 291:2364-2369.
-
(2001)
Science
, vol.291
, pp. 2364-2369
-
-
Helenius, A.1
Aebi, M.2
-
13
-
-
3943059566
-
Role of N-linked glycans in the endoplasmic reticulum
-
Helenius A., Aebi M. Role of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 2004, 73:1019-1049.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 1019-1049
-
-
Helenius, A.1
Aebi, M.2
-
14
-
-
64049096002
-
N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
-
Golzman R., Okiyoneda T., Mulvihill C.M., Rini J.M., Barriere H., Lukas G.L. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Biol. Chem. 2009, 184:847-862.
-
(2009)
J. Biol. Chem.
, vol.184
, pp. 847-862
-
-
Golzman, R.1
Okiyoneda, T.2
Mulvihill, C.M.3
Rini, J.M.4
Barriere, H.5
Lukas, G.L.6
-
15
-
-
79953721653
-
Modulation of E-cadherin function and dysfunction by N-glycosylation
-
Pinho S.S., Seruca R., Gärtner F., Yamaguchi Y., Gu J., Taniguchi N., Reis C.A. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell. Mol. Life Sci. 2011, 68:1011-1020.
-
(2011)
Cell. Mol. Life Sci.
, vol.68
, pp. 1011-1020
-
-
Pinho, S.S.1
Seruca, R.2
Gärtner, F.3
Yamaguchi, Y.4
Gu, J.5
Taniguchi, N.6
Reis, C.A.7
-
16
-
-
80053469048
-
Mechanisms and principles of N-linked protein glycosylation
-
Scwarz F., Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 2011, 21:576-582.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 576-582
-
-
Scwarz, F.1
Aebi, M.2
-
17
-
-
0025765996
-
Removal of N-glycosylation sites of the yeast acid phosphatase severely affects protein folding
-
Riederer M.A., Hinnen A. Removal of N-glycosylation sites of the yeast acid phosphatase severely affects protein folding. J. Bacteriol. 1991, 173:3539-3546.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 3539-3546
-
-
Riederer, M.A.1
Hinnen, A.2
-
18
-
-
0028800891
-
Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation
-
Kitada K., Yamaguchi E., Arisawa M. Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene 1995, 165:203-206.
-
(1995)
Gene
, vol.165
, pp. 203-206
-
-
Kitada, K.1
Yamaguchi, E.2
Arisawa, M.3
-
19
-
-
0031845220
-
The yeast dynactin complex is involved in portioning the mitotic spindle between mother and daughter cells during anaphase B
-
Kahana J.A., Schlenstedt G., Evanchuk D.M., Geiser J.R., Hoyt M.A., Silver P.A. The yeast dynactin complex is involved in portioning the mitotic spindle between mother and daughter cells during anaphase B. Mol. Biol. Cell 1999, 9:1741-1756.
-
(1999)
Mol. Biol. Cell
, vol.9
, pp. 1741-1756
-
-
Kahana, J.A.1
Schlenstedt, G.2
Evanchuk, D.M.3
Geiser, J.R.4
Hoyt, M.A.5
Silver, P.A.6
-
20
-
-
49649096905
-
Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae
-
Izawa S., Kita T., Ikeda K., Inoue Y. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem. J. 2008, 414:111-119.
-
(2008)
Biochem. J.
, vol.414
, pp. 111-119
-
-
Izawa, S.1
Kita, T.2
Ikeda, K.3
Inoue, Y.4
-
21
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski R.S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Gene 1989, 122:19-27.
-
(1989)
Gene
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
22
-
-
79952572657
-
Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies
-
Ikeda K., Kitagawa S., Tada T., Iefuji H., Inoue Y., Izawa S. Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lipid bodies. Appl. Microbiol. Biotechnol. 2011, 89:1971-1977.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 1971-1977
-
-
Ikeda, K.1
Kitagawa, S.2
Tada, T.3
Iefuji, H.4
Inoue, Y.5
Izawa, S.6
-
23
-
-
0029127922
-
Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin Nsp1
-
Lim C.R., Kimata Y., Oka M., Nomaguchi K., Kohno K. Thermosensitivity of green fluorescent protein fluorescence utilized to reveal novel nuclear-like compartments in a mutant nucleoporin Nsp1. J. Biochem. 1995, 118:13-17.
-
(1995)
J. Biochem.
, vol.118
, pp. 13-17
-
-
Lim, C.R.1
Kimata, Y.2
Oka, M.3
Nomaguchi, K.4
Kohno, K.5
-
24
-
-
0029586689
-
Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells
-
Ogawa H., Inouye S., Tsuji F.I., Yasuda K., Umesono K. Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc. Natl. Acad. Sci. USA 1995, 92:11899-11903.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 11899-11903
-
-
Ogawa, H.1
Inouye, S.2
Tsuji, F.I.3
Yasuda, K.4
Umesono, K.5
-
25
-
-
0017181626
-
The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives
-
Lehle L., Tanner W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 1976, 72:167-170.
-
(1976)
FEBS Lett.
, vol.72
, pp. 167-170
-
-
Lehle, L.1
Tanner, W.2
-
26
-
-
0027402074
-
Glycoprotein biosynthesis in yeast
-
Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J. 1993, 7:540-550.
-
(1993)
FASEB J.
, vol.7
, pp. 540-550
-
-
Herscovics, A.1
Orlean, P.2
-
27
-
-
0041856249
-
New findings on interactions among the yeast oligosaccharyl transferase subunits using a chemical cross-linker
-
Yan A., Ahmed E., Lennarz W.J. New findings on interactions among the yeast oligosaccharyl transferase subunits using a chemical cross-linker. J. Biol. Chem. 2003, 278:33078-33087.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 33078-33087
-
-
Yan, A.1
Ahmed, E.2
Lennarz, W.J.3
-
28
-
-
84855810623
-
CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae
-
Benjaphokee S., Koedrith P., Auesukaree C., Asvarak T., Sugiyama M., Kaneko Y., Boonchird C., Harashima S. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. New Biotechnol. 2011, 29:166-176.
-
(2011)
New Biotechnol.
, vol.29
, pp. 166-176
-
-
Benjaphokee, S.1
Koedrith, P.2
Auesukaree, C.3
Asvarak, T.4
Sugiyama, M.5
Kaneko, Y.6
Boonchird, C.7
Harashima, S.8
-
29
-
-
0028846436
-
+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport
-
+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol. Biol. Cell 1995, 6:1515-1534.
-
(1995)
Mol. Biol. Cell
, vol.6
, pp. 1515-1534
-
-
Tani, T.1
Derby, R.J.2
Hiraoka, Y.3
Spector, D.L.4
-
30
-
-
0029737693
-
Regulation of mRNA export in response to stress in Saccharomyces cerevisiae
-
Saavedra C., Tung K.S., Amberg D.C., Hopper A.K., Cole C.N. Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev. 1996, 10:1608-1620.
-
(1996)
Genes Dev.
, vol.10
, pp. 1608-1620
-
-
Saavedra, C.1
Tung, K.S.2
Amberg, D.C.3
Hopper, A.K.4
Cole, C.N.5
-
32
-
-
0026040203
-
Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating
-
Henle K.J., Nagle W.A. Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating. Exp. Cell Res. 1991, 196:184-191.
-
(1991)
Exp. Cell Res.
, vol.196
, pp. 184-191
-
-
Henle, K.J.1
Nagle, W.A.2
-
33
-
-
0027273046
-
Prompt protein glycosylation during acute heat stress
-
Henle K.J., Kaushal G.P., Nagle W.A., Nolen G.T. Prompt protein glycosylation during acute heat stress. Exp. Cell Res. 1993, 207:245-251.
-
(1993)
Exp. Cell Res.
, vol.207
, pp. 245-251
-
-
Henle, K.J.1
Kaushal, G.P.2
Nagle, W.A.3
Nolen, G.T.4
-
34
-
-
0028128694
-
Heat shock-induced prompt glycosylation. Identification of P-SG67 as calreticulin
-
Jethmalani S.M., Henle K.J., Kaushal G.P. Heat shock-induced prompt glycosylation. Identification of P-SG67 as calreticulin. J. Biol. Chem. 1994, 269:23603-23609.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 23603-23609
-
-
Jethmalani, S.M.1
Henle, K.J.2
Kaushal, G.P.3
-
37
-
-
0023880441
-
Effect of glycosylation on the mechanism of renaturation of invertase from yeast
-
Schülke N., Schmid F.X. Effect of glycosylation on the mechanism of renaturation of invertase from yeast. J. Biol. Chem. 1988, 263:8832-8837.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 8832-8837
-
-
Schülke, N.1
Schmid, F.X.2
-
38
-
-
46749092844
-
N-glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity
-
Hirai-Fujita Y., Yamamoto-Hino M., Kanie O., Goto S. N-glycosylation of the Drosophila neural protein Chaoptin is essential for its stability, cell surface transport and adhesive activity. FEBS Lett. 2008, 582:2572-2576.
-
(2008)
FEBS Lett.
, vol.582
, pp. 2572-2576
-
-
Hirai-Fujita, Y.1
Yamamoto-Hino, M.2
Kanie, O.3
Goto, S.4
-
39
-
-
80052400203
-
N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4
-
Haga Y., Ishii K., Suzuki T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J. Biol. Chem. 2011, 286:31320-31327.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31320-31327
-
-
Haga, Y.1
Ishii, K.2
Suzuki, T.3
-
40
-
-
67649625166
-
A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling
-
Fröhlich F., Moreira K., Aguilar P.S., Hubner N.C., Mann M., Walter P., Walther T.C. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 2009, 185:1227-1242.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1227-1242
-
-
Fröhlich, F.1
Moreira, K.2
Aguilar, P.S.3
Hubner, N.C.4
Mann, M.5
Walter, P.6
Walther, T.C.7
|