메뉴 건너뛰기




Volumn 19, Issue 8, 2011, Pages 2451-2460

MCE Training Techniques for Topic Identification of Spoken Audio Documents

Author keywords

Discriminative training; machine learning; speech recognition; topic identification

Indexed keywords


EID: 84858978514     PISSN: 15587916     EISSN: 15587924     Source Type: Journal    
DOI: 10.1109/TASL.2011.2139207     Document Type: Article
Times cited : (22)

References (30)
  • 1
    • 17644442381 scopus 로고    scopus 로고
    • Multi-class support vector machines: A new approach
    • Hong Kong, China, Apr.
    • J. Arenas-García and F. Pérez-Cruz, “Multi-class support vector machines: A new approach,” in Proc. ICASSP, Hong Kong, China, Apr. 2003, pp. 781–784.
    • (2003) Proc. ICASSP , pp. 781-784
    • Arenas-García, J.1    Pérez-Cruz, F.2
  • 3
    • 84898983965 scopus 로고    scopus 로고
    • Phonetic speaker recognition with support vector machines
    • S. Thrun, L. Saul, and B. Scholköpf, Eds. Cambridge, MA: MIT Press
    • W. Campbell et al., “Phonetic speaker recognition with support vector machines,” in Adv. Neural Inf. Process. Syst. 16, S. Thrun, L. Saul, and B. Scholköpf, Eds. Cambridge, MA: MIT Press, 2004.
    • (2004) Adv. Neural Inf. Process. Syst. 16
    • Campbell, W.1
  • 5
    • 84959118000 scopus 로고    scopus 로고
    • The Fisher corpus: A resource for the next generation of speech-to-text
    • Lisbon, Portugal, May
    • C. Cieri, D. Miller, and K. Walker, “The Fisher corpus: A resource for the next generation of speech-to-text,” in Proc. Int. Conf. Lang. Resources Eval., Lisbon, Portugal, May 2004, pp. 69–71.
    • (2004) Proc. Int. Conf. Lang. Resources Eval. , pp. 69-71
    • Cieri, C.1    Miller, D.2    Walker, K.3
  • 6
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio “SVMTorch: Support vector machines for large-scale regression problems,” J. Mach. Learn. Res., vol. 1, pp. 143–160, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 7
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multi-class kernel-based vector machines
    • K. Crammer and Y. Singer “On the algorithmic implementation of multi-class kernel-based vector machines,” J. Mach. Learn. Res., vol. 2, pp. 265–292, 2001.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 8
    • 33745875075 scopus 로고    scopus 로고
    • A MFoM learning approach to robust multiclass multi-label text categorization
    • Banff, AB, Canada, Jul.
    • S. Gao, W. Wu, C.-H. Lee, and T.-S. Chua, “A MFoM learning approach to robust multiclass multi-label text categorization,” in Proc. ICML, Banff, AB, Canada, Jul. 2004, pp. 42–49.
    • (2004) Proc. ICML , pp. 42-49
    • Gao, S.1    Wu, W.2    Lee, C.-H.3    Chua, T.-S.4
  • 9
    • 0038359548 scopus 로고    scopus 로고
    • A probabilistic framework for segment-based speech recognition
    • J. Glass “A probabilistic framework for segment-based speech recognition,” Comput. Speech Lang., vol. 17, no. 2–3, pp. 137–152, 2003.
    • (2003) Comput. Speech Lang. , vol.17 , Issue.2-3 , pp. 137-152
    • Glass, J.1
  • 10
    • 0141702347 scopus 로고    scopus 로고
    • Optimizing SVMs for complex call classification
    • Hong Kong, China, Apr.
    • P. Haffner, G. Tur, and J. Wright, “Optimizing SVMs for complex call classification,” in Proc. ICASSP, Hong Kong, China, Apr. 2003, pp. 632–635.
    • (2003) Proc. ICASSP , pp. 632-635
    • Haffner, P.1    Tur, G.2    Wright, J.3
  • 11
    • 33846200839 scopus 로고    scopus 로고
    • Combining feature sets with support vector machines: Application to speaker recognition
    • San Juan, Puerto Rico, Nov.
    • A. Hatch, A. Stolcke, and B. Peskin, “Combining feature sets with support vector machines: Application to speaker recognition,” in Proc. IEEE Workshop Autom. Speech Recognition Understand., San Juan, Puerto Rico, Nov. 2005, pp. 75–79.
    • (2005) Proc. IEEE Workshop Autom. Speech Recognition Understand. , pp. 75-79
    • Hatch, A.1    Stolcke, A.2    Peskin, B.3
  • 12
    • 44849114362 scopus 로고    scopus 로고
    • Topic identification from audio recordings using word and phone recognition lattices
    • Kyoto, Japan, Dec.
    • T. Hazen, F. Richardson, and A. Margolis, “Topic identification from audio recordings using word and phone recognition lattices,” in Proc. IEEE Workshop Autom. Speech Recognition Understand., Kyoto, Japan, Dec. 2007, pp. 659–664.
    • (2007) Proc. IEEE Workshop Autom. Speech Recognition Understand. , pp. 659-664
    • Hazen, T.1    Richardson, F.2    Margolis, A.3
  • 13
    • 51449103896 scopus 로고    scopus 로고
    • Discriminative feature weighting using MCE training for topic identification of spoken audio recordings
    • Las Vegas, NV, Apr.
    • T. Hazen and A. Margolis, “Discriminative feature weighting using MCE training for topic identification of spoken audio recordings,” in Proc. IEEE ICASSP, Las Vegas, NV, Apr. 2008, pp. 4965–4968.
    • (2008) Proc. IEEE ICASSP , pp. 4965-4968
    • Hazen, T.1    Margolis, A.2
  • 14
    • 84867211153 scopus 로고    scopus 로고
    • A hybrid SVM/MCE training approach for vector space topic identification of spoken audio recordings
    • Brisbane, Australia, Sep.
    • T. Hazen and F. Richardson, “A hybrid SVM/MCE training approach for vector space topic identification of spoken audio recordings,” in Proc. Interspeech, Brisbane, Australia, Sep. 2008, pp. 2542–2545.
    • (2008) Proc. Interspeech , pp. 2542-2545
    • Hazen, T.1    Richardson, F.2
  • 15
    • 78049376440 scopus 로고    scopus 로고
    • Multi-class SVM optimization using MCE training with application to topic identification
    • Dallas, TX, Mar.
    • T. Hazen, “Multi-class SVM optimization using MCE training with application to topic identification,” in Proc. IEEE ICASSP, Dallas, TX, Mar. 2010, pp. 5350–5353.
    • (2010) Proc. IEEE ICASSP , pp. 5350-5353
    • Hazen, T.1
  • 16
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Chemnitz, Germany, Apr.
    • T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” in Proc. Eur. Conf. Mach. Learn., Chemnitz, Germany, Apr. 1998, pp. 137–142.
    • (1998) Proc. Eur. Conf. Mach. Learn. , pp. 137-142
    • Joachims, T.1
  • 17
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Dec.
    • B.-H. Juang and S. Katagiri “Discriminative learning for minimum error classification,” IEEE Trans. Signal Process., vol. 40, no. 12, pp. 3043–3054, Dec. 1992.
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.-H.1    Katagiri, S.2
  • 18
    • 0037226148 scopus 로고    scopus 로고
    • Discriminative training of natural language call routers
    • Jan.
    • H.-K.J. Kuo and C.-H. Lee “Discriminative training of natural language call routers,” IEEE Trans. Speech Audio Process., vol. 11, no. 1, pp. 24–35, Jan. 2003.
    • (2003) IEEE Trans. Speech Audio Process. , vol.11 , Issue.1 , pp. 24-35
    • Kuo, H.-K.J.1    Lee, C.-H.2
  • 19
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • Chemnitz, Germany, Apr.
    • D. Lewis, “Naive (Bayes) at forty: The independence assumption in information retrieval,” in Proc. Eur. Conf. Mach. Learn., Chemnitz, Germany, Apr. 1998, pp. 4–15.
    • (1998) Proc. Eur. Conf. Mach. Learn. , pp. 4-15
    • Lewis, D.1
  • 20
    • 85009110335 scopus 로고    scopus 로고
    • Discriminative training of naive Bayes classifiers for natural language call routing
    • Jeju Island, Korea, Oct.
    • P. Liu, H. Jiang, and I. Zitouni, “Discriminative training of naive Bayes classifiers for natural language call routing,” in Proc. Interspeech, Jeju Island, Korea, Oct. 2004, pp. 1589–1592.
    • (2004) Proc. Interspeech , pp. 1589-1592
    • Liu, P.1    Jiang, H.2    Zitouni, I.3
  • 21
    • 84964500666 scopus 로고
    • Approaches to topic identification on the switchboard corpus
    • Adelaide, Australia, Apr.
    • J. McDonough et al., “Approaches to topic identification on the switchboard corpus,” in Proc. ICASSP, Adelaide, Australia, Apr. 1994, pp. 385–388.
    • (1994) Proc. ICASSP , pp. 385-388
    • McDonough, J.1
  • 23
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Cambridge, MA: MIT Press
    • J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods,” in Advances in Large Margin Classifiers. Cambridge, MA: MIT Press, 1999, pp. 61–74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 24
    • 0141534963 scopus 로고
    • RPROP—A fast adaptive learning algorithm
    • Antalya, Turkey
    • M. Riedmiller and H. Braun, “RPROP—A fast adaptive learning algorithm,” in Proc. Int. Symp. Comput. Inf., Antalya, Turkey, 1992, pp. 279–285.
    • (1992) Proc. Int. Symp. Comput. Inf. , pp. 279-285
    • Riedmiller, M.1    Braun, H.2
  • 25
    • 85135196934 scopus 로고    scopus 로고
    • A maximum likelihood model for topic classification of broadcast news
    • Rhodes, Greece, Sep.
    • R. Schwartz, T. Imai, L. Nguyen, and J. Makhoul, “A maximum likelihood model for topic classification of broadcast news,” in Proc. Eurospeech, Rhodes, Greece, Sep. 1997, pp. 1455–1458.
    • (1997) Proc. Eurospeech , pp. 1455-1458
    • Schwartz, R.1    Imai, T.2    Nguyen, L.3    Makhoul, J.4
  • 26
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani “Machine learning in automated text categorization,” ACM Comput. Surv., vol. 34, no. 1, pp. 1–47, 2002.
    • (2002) ACM Comput. Surv. , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 28
    • 70450177185 scopus 로고    scopus 로고
    • Techniques for rapid and robust topic identification of conversational telephone speech
    • Brighton, U.K., Sept.
    • J. Wintrode and S. Kulp, “Techniques for rapid and robust topic identification of conversational telephone speech,” in Proc. Interspeech, Brighton, U.K., Sept. 2009, pp. 1471–1474.
    • (2009) Proc. Interspeech , pp. 1471-1474
    • Wintrode, J.1    Kulp, S.2
  • 29
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Nashville, TN, Jul.
    • Y. Yang and J. Pedersen, “A comparative study on feature selection in text categorization,” in Proc. Int. Conf. Mach. Learn. (ICML), Nashville, TN, Jul. 1997, pp. 412–420.
    • (1997) Proc. Int. Conf. Mach. Learn. (ICML) , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 30
    • 64849099270 scopus 로고    scopus 로고
    • Constrained minimization and discriminative training for natural language call routing
    • Jan.
    • I. Zitouni “Constrained minimization and discriminative training for natural language call routing,” IEEE Trans. Speech Audio Process., vol. 16, no. 1, pp. 208–215, Jan. 2008.
    • (2008) IEEE Trans. Speech Audio Process. , vol.16 , Issue.1 , pp. 208-215
    • Zitouni, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.