메뉴 건너뛰기




Volumn 58, Issue , 2012, Pages 31-37

Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system

Author keywords

Adaptive neuro fuzzy inference system; Artificial neural network; Fuzzy inference system; Mechanical properties; Polyamide 6; Polymer composite

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; EXPERIMENTAL DATA; FEEDING RATE; FIBER REINFORCED; FUZZY INFERENCE SYSTEM; GLASS FIBER REINFORCED POLYMER; IZOD IMPACT STRENGTH; MECHANICAL PERFORMANCE; MIXING TEMPERATURE; MODELING RESULTS; MULTIPLE INPUTS SINGLE OUTPUTS; POLYAMIDE 6; POLYMER COMPOSITE; ROOT MEAN SQUARED ERRORS; SCREW SPEED; SHORT GLASS FIBER;

EID: 84858974195     PISSN: 09270256     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.commatsci.2012.01.012     Document Type: Article
Times cited : (48)

References (21)
  • 2
    • 0005908212 scopus 로고    scopus 로고
    • Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications Springer Berlin
    • O. Kayak, and L.A. Zadeh Fuzzy Inference Systems: A Critical Review Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications 1998 Springer Berlin
    • (1998) Fuzzy Inference Systems: A Critical Review
    • Kayak, O.1    Zadeh, L.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.