메뉴 건너뛰기




Volumn 26, Issue 7, 2012, Pages 961-972

Serial dependence properties in multivariate streamflow simulation with independent decomposition analysis

Author keywords

Colorado river; Independent component analysis; Multivariate stochastic simulation; Serial dependence; Streamflow

Indexed keywords

ALTERNATIVE DESIGNS; COLORADO RIVER; COLORADO RIVER BASIN; DECOMPOSITION ANALYSIS; INDEPENDENT COMPONENTS; MULTIVARIATE TIME SERIES; OBSERVATION DATA; OPERATION RULES; SERIAL DEPENDENCE; STOCHASTIC SIMULATIONS; STREAMFLOW SIMULATIONS; UNIVARIATE TIME SERIES;

EID: 84858860479     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.8177     Document Type: Article
Times cited : (7)

References (47)
  • 1
    • 0141632724 scopus 로고    scopus 로고
    • Kernel independent component analysis. 2003 Ieee International Conference on Acoustics, Speech, and Signal Processing, Proceedings
    • Bach FR, Jordan MI. 2003. Kernel independent component analysis. 2003 Ieee International Conference on Acoustics, Speech, and Signal Processing, Vol Iv, Proceedings: 876-879.
    • (2003) , vol.4 , pp. 876-879
    • Bach, F.R.1    Jordan, M.I.2
  • 2
    • 0029411030 scopus 로고
    • An Information Maximization Approach to Blind Separation and Blind Deconvolution
    • Bell AJ, Sejnowski TJ. 1995. An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation 7: 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0029412179 scopus 로고
    • Product Periodic Autoregressive Processes for Modeling Intermittent Monthly Streamflows
    • Chebaane M, Salas JD, Boes DC. 1995. Product Periodic Autoregressive Processes for Modeling Intermittent Monthly Streamflows. Water Resources Research 31: 1513-1518.
    • (1995) Water Resources Research , vol.31 , pp. 1513-1518
    • Chebaane, M.1    Salas, J.D.2    Boes, D.C.3
  • 5
    • 84858859794 scopus 로고    scopus 로고
    • An algebraic algorithm for independent component analysis with more sources than sensors
    • De Lathauwer L. 2002. An algebraic algorithm for independent component analysis with more sources than sensors. Mathematics in Signal Processing V: 37-45.
    • (2002) Mathematics in Signal Processing V , pp. 37-45
    • De Lathauwer, L.1
  • 8
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • Hyvarinen A, Hoyer PO, Inki M. 2001. Topographic independent component analysis. Neural Computation 13: 1527-1558.
    • (2001) Neural Computation , vol.13 , pp. 1527-1558
    • Hyvarinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 10
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvarinen A, Oja E. 1997a. A fast fixed-point algorithm for independent component analysis. Neural Computation 9: 1483-1492.
    • (1997) Neural Computation , vol.9 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 12
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A, Oja E. 2000. Independent component analysis: algorithms and applications. Neural Networks 13: 411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 13
    • 84858864920 scopus 로고    scopus 로고
    • Generation of correlated non-Gaussian random variables from independent components In Fourth International Symposium on Independent Component Analysis and Blind Signal Separation. Nara: Japan
    • Karvanen J. 2003. Generation of correlated non-Gaussian random variables from independent components In Fourth International Symposium on Independent Component Analysis and Blind Signal Separation. Nara: Japan; 769-774.
    • (2003) , pp. 769-774
    • Karvanen, J.1
  • 14
    • 0036531349 scopus 로고    scopus 로고
    • Blind separation methods based on Pearson system and its extensions
    • Karvanen J, Koivunen V. 2002. Blind separation methods based on Pearson system and its extensions. Signal Processing 82: 663-673.
    • (2002) Signal Processing , vol.82 , pp. 663-673
    • Karvanen, J.1    Koivunen, V.2
  • 16
    • 0033057604 scopus 로고    scopus 로고
    • Moments of power transformed time series
    • Katz RW. 1999. Moments of power transformed time series. Environmetrics 10: 301-307.
    • (1999) Environmetrics , vol.10 , pp. 301-307
    • Katz, R.W.1
  • 17
    • 0034083348 scopus 로고    scopus 로고
    • A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series
    • Koutsoyiannis D. 2000. A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. Water Resources Research 36: 1519-1533.
    • (2000) Water Resources Research , vol.36 , pp. 1519-1533
    • Koutsoyiannis, D.1
  • 18
    • 24944507808 scopus 로고    scopus 로고
    • Synthetic generation of hydrologic time series based on nonparametric random generation
    • Kim TW, Valdes JB. 2005. Synthetic generation of hydrologic time series based on nonparametric random generation. Journal of Hydrologic Engineering 10: 395-404.
    • (2005) Journal of Hydrologic Engineering , vol.10 , pp. 395-404
    • Kim, T.W.1    Valdes, J.B.2
  • 19
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • Lall U, Sharma A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research 32: 679-693.
    • (1996) Water Resources Research , vol.32 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 20
    • 77956016665 scopus 로고    scopus 로고
    • Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes
    • DOI:10·1029/2009JD012801.
    • Lee T, Ouarda TBMJ. 2010. Long-term prediction of precipitation and hydrologic extremes with nonstationary oscillation processes. Journal of Geophysical Research-Atmospheres, DOI:10·1029/2009JD012801.
    • (2010) Journal of Geophysical Research-Atmospheres
    • Lee, T.1    Ouarda, T.B.M.J.2
  • 21
    • 84858861514 scopus 로고    scopus 로고
    • Record Extension of Monthly Flows for the Colorado River System. Bureau of Reclamation, U.S. Department of Interior.
    • Lee T, Salas JD. 2006. Record Extension of Monthly Flows for the Colorado River System. Bureau of Reclamation, U.S. Department of Interior.
    • (2006)
    • Lee, T.1    Salas, J.D.2
  • 22
    • 84858866616 scopus 로고    scopus 로고
    • Simulation modeling of Multivariate Time Series Employing Decomposition Analysis
    • In, Ramirez JA (ed). American Geophysical Union: Colorado State University, Fort Collins.
    • Lee T, Salas JD, Frevert D. 2007. Simulation modeling of Multivariate Time Series Employing Decomposition Analysis In Hydrology Days 2007, Ramirez JA (ed). American Geophysical Union: Colorado State University, Fort Collins.
    • (2007) Hydrology Days 2007
    • Lee, T.1    Salas, J.D.2    Frevert, D.3
  • 23
    • 77956336427 scopus 로고    scopus 로고
    • An Enhanced Nonparametric Streamflow Disaggregation Model with Genetic Algorithm
    • DOI: 10·1029/2009WR007761.
    • Lee T, Salas JD, Prarie J. 2010. An Enhanced Nonparametric Streamflow Disaggregation Model with Genetic Algorithm. Water Resources Research, DOI: 10·1029/2009WR007761.
    • (2010) Water Resources Research
    • Lee, T.1    Salas, J.D.2    Prarie, J.3
  • 24
    • 0001537728 scopus 로고    scopus 로고
    • Independent component analysis for mixed sub-Gaussian and super-Gaussian sources. Proceedings of the 4th Joint Symposium on Neural Computation
    • Lee TW, Sejnowski TJ. 1997. Independent component analysis for mixed sub-Gaussian and super-Gaussian sources. Proceedings of the 4th Joint Symposium on Neural Computation, Vol 7: 132-139.
    • (1997) , vol.7 , pp. 132-139
    • Lee, T.W.1    Sejnowski, T.J.2
  • 25
    • 0022266434 scopus 로고
    • Interannual Streamflow Variability in the United States Based on Principal Components
    • Lins HF. 1985. Interannual Streamflow Variability in the United States Based on Principal Components. Water Resources Research 21: 691-701.
    • (1985) Water Resources Research , vol.21 , pp. 691-701
    • Lins, H.F.1
  • 26
    • 0001259448 scopus 로고
    • Estimation of Mutual Information Using Kernel Density Estimators
    • Moon YI, Rajagopalan B, Lall U. 1995. Estimation of Mutual Information Using Kernel Density Estimators. Physical Review E 52: 2318-2321.
    • (1995) Physical Review E , vol.52 , pp. 2318-2321
    • Moon, Y.I.1    Rajagopalan, B.2    Lall, U.3
  • 27
    • 84962424424 scopus 로고    scopus 로고
    • Independent component analysis for financial time series. Ieee 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium-Proceedings
    • Oja E, Kiviluoto K, Malaroiu S. 2000. Independent component analysis for financial time series. Ieee 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium-Proceedings: 111-116.
    • (2000) , pp. 111-116
    • Oja, E.1    Kiviluoto, K.2    Malaroiu, S.3
  • 29
    • 84858866617 scopus 로고    scopus 로고
    • Natural flow and salt computation methods. Bureau of Reclam., U.S. Department of the Inter.: Salt Lake City, Utah;
    • Prairie J, Callejo R. 2005. Natural flow and salt computation methods. Bureau of Reclam., U.S. Department of the Inter.: Salt Lake City, Utah; p. 122.
    • (2005) , pp. 122
    • Prairie, J.1    Callejo, R.2
  • 31
    • 0001805672 scopus 로고
    • Analysis and Modeling of Hydrologic Time Series
    • Maidment DR (ed). McGraw-Hill.
    • Salas JD. 1993. Analysis and Modeling of Hydrologic Time Series. In Handbook of Hydrology, Maidment DR (ed). McGraw-Hill.
    • (1993) Handbook of Hydrology
    • Salas, J.D.1
  • 33
    • 77953416942 scopus 로고    scopus 로고
    • Non-Parametric Simulation of Single Site Seasonal Streamflows
    • Salas JD, Lee T. 2010. Non-Parametric Simulation of Single Site Seasonal Streamflows. Journal of Hydrologic Engineering 15: 284-296.
    • (2010) Journal of Hydrologic Engineering , vol.15 , pp. 284-296
    • Salas, J.D.1    Lee, T.2
  • 37
    • 0034789277 scopus 로고    scopus 로고
    • A hybrid stochastic model for multiseason streamflow simulation
    • Srinivas VV, Srinivasan K. 2001. A hybrid stochastic model for multiseason streamflow simulation. Water Resources Research 37: 2537-2549.
    • (2001) Water Resources Research , vol.37 , pp. 2537-2549
    • Srinivas, V.V.1    Srinivasan, K.2
  • 38
    • 28844433295 scopus 로고    scopus 로고
    • Matched block bootstrap for resampling multiseason hydrologic time series
    • Srinivas VV, Srinivasan K. 2005a. Matched block bootstrap for resampling multiseason hydrologic time series. Hydrological Processes 19: 3659-3682.
    • (2005) Hydrological Processes , vol.19 , pp. 3659-3682
    • Srinivas, V.V.1    Srinivasan, K.2
  • 39
    • 11144316075 scopus 로고    scopus 로고
    • Hybrid moving block bootstrap for stochastic simulation of multi-site multi-season streamflows
    • Srinivas VV, Srinivasan K. 2005b. Hybrid moving block bootstrap for stochastic simulation of multi-site multi-season streamflows. Journal of Hydrology 302: 307-330.
    • (2005) Journal of Hydrology , vol.302 , pp. 307-330
    • Srinivas, V.V.1    Srinivasan, K.2
  • 40
    • 0022266426 scopus 로고    scopus 로고
    • Multisite Arma(1,1) and Disaggregation Models for Annual Streamflow Generation
    • Stedinger JR, Lettenmaier DP, Vogel RM. 2005b. Multisite Arma(1, 1) and Disaggregation Models for Annual Streamflow Generation. Water Resources Research 21: 497-509.
    • (2005) Water Resources Research , vol.21 , pp. 497-509
    • Stedinger, J.R.1    Lettenmaier, D.P.2    Vogel, R.M.3
  • 41
    • 0019902426 scopus 로고
    • Synthetic Streamflow Generation. 1. Model Verification and Validation
    • Stedinger JR, Taylor MR. 1982a. Synthetic Streamflow Generation. 1. Model Verification and Validation. Water Resources Research 18: 909-918.
    • (1982) Water Resources Research , vol.18 , pp. 909-918
    • Stedinger, J.R.1    Taylor, M.R.2
  • 42
    • 0020333019 scopus 로고
    • Synthetic Streamflow Generation. 2. Effect of Parameter Uncertainty
    • Stedinger JR, Taylor MR. 1982b. Synthetic Streamflow Generation. 2. Effect of Parameter Uncertainty. Water Resources Research 18: 919-924.
    • (1982) Water Resources Research , vol.18 , pp. 919-924
    • Stedinger, J.R.1    Taylor, M.R.2
  • 44
    • 1342329662 scopus 로고    scopus 로고
    • A statistical downscaling method for monthly total precipitation over Turkey
    • Tatli H, Dalfes HN, Mentes S. 2004. A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology 24: 161-180.
    • (2004) International Journal of Climatology , vol.24 , pp. 161-180
    • Tatli, H.1    Dalfes, H.N.2    Mentes, S.3
  • 45
    • 15744374432 scopus 로고    scopus 로고
    • Surface air temperature variability over Turkey and its connection to large-scale upper air circulation via multivariate techniques
    • Tatli H, Dalfes HN, Mentes SS. 2005. Surface air temperature variability over Turkey and its connection to large-scale upper air circulation via multivariate techniques. International Journal of Climatology 25: 331-350.
    • (2005) International Journal of Climatology , vol.25 , pp. 331-350
    • Tatli, H.1    Dalfes, H.N.2    Mentes, S.S.3
  • 46
    • 0029662864 scopus 로고    scopus 로고
    • The moving blocks bootstrap versus parametric time series models
    • Vogel RM, Shallcross AL. 1996. The moving blocks bootstrap versus parametric time series models. Water Resources Research 32: 1875-1882.
    • (1996) Water Resources Research , vol.32 , pp. 1875-1882
    • Vogel, R.M.1    Shallcross, A.L.2
  • 47
    • 34547147903 scopus 로고    scopus 로고
    • Modeling multivariable hydrological series: Principal component analysis or independent component analysis?
    • W06429. DOI: 10.1029/2006WR005617.
    • Westra S, Brown C, Lall U, Sharma A. 2007. Modeling multivariable hydrological series: Principal component analysis or independent component analysis? Water Resources Research 43:W06429. DOI: 10.1029/2006WR005617.
    • (2007) Water Resources Research , vol.43
    • Westra, S.1    Brown, C.2    Lall, U.3    Sharma, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.