메뉴 건너뛰기




Volumn , Issue , 2000, Pages 111-116

Independent component analysis for financial time series

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ADAPTIVE SYSTEMS; BLIND SOURCE SEPARATION; FINANCE; FINANCIAL DATA PROCESSING; FORECASTING; INDEPENDENT COMPONENT ANALYSIS; MATHEMATICAL TRANSFORMATIONS; MIXTURES; SIGNAL PROCESSING; TIME SERIES;

EID: 84962424424     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASSPCC.2000.882456     Document Type: Conference Paper
Times cited : (57)

References (26)
  • 1
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind source separation
    • Cambridge, MA: MIT Press
    • S. Amari, A. Cichocki, and H.H. Yang. A new learning algorithm for blind source separation. In Advances in Neural Information Processing 8, Cambridge, MA: MIT Press, 757-763, 1996.
    • (1996) Advances in Neural Information Processing , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 2
    • 0031197006 scopus 로고    scopus 로고
    • First application of Independent Component Analysis to extracting structure from stock returns
    • A. Back and A. Weigend. First application of Independent Component Analysis to extracting structure from stock returns. Int. J. Neural Systems 8, 473-484, 1997.
    • (1997) Int. J. Neural Systems , vol.8 , pp. 473-484
    • Back, A.1    Weigend, A.2
  • 3
    • 0015470611 scopus 로고
    • Single units and sensation: A neuron doctrine for perceptual psychology?
    • H. B. Barlow. Single units and sensation: a neuron doctrine for perceptual psychology? Perception, 1: 371-394, 1972.
    • (1972) Perception , vol.1 , pp. 371-394
    • Barlow, H.B.1
  • 4
    • 0029411030 scopus 로고
    • An information - Maximization approach to blind separation and blind deconvolution
    • A.J. Bell and T.J. Sejnowski. An information - maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 5
    • 0032187518 scopus 로고    scopus 로고
    • Blind signed separation: Statistical principles
    • J.-F. Cardoso. Blind signed separation: statistical principles. Proc. IEEE 86, 2009-2025, 1998.
    • (1998) Proc. IEEE , vol.86 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 6
    • 0030285433 scopus 로고    scopus 로고
    • Robust neural networks with on-line learning for blind identification and blind separation of sources
    • A. Cichocki and R. Unbehauen. Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. CS I, 43: 894-906, 1996.
    • (1996) IEEE Trans. CS I , vol.43 , pp. 894-906
    • Cichocki, A.1    Unbehauen, R.2
  • 7
    • 0028416938 scopus 로고
    • Independent Component Analysis - A new concept?
    • P. Comon. Independent Component Analysis - a new concept? Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 9
    • 84950754164 scopus 로고
    • Exploratory projection pursuit
    • J. Friedman. Exploratory projection pursuit. J. Am. Stat. Assoc., 82: 249-266, 1987.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 249-266
    • Friedman, J.1
  • 10
    • 0342477720 scopus 로고    scopus 로고
    • An experimental comparison of neural ICA algorithms
    • Sept. 2-4, Skövde, Sweden
    • X. Giannakopoulos, J. Karhunen, and E. Oja. An experimental comparison of neural ICA algorithms. Proc. ICANN'98, Sept. 2-4, 1998, Skövde, Sweden.
    • (1998) Proc. ICANN'98
    • Giannakopoulos, X.1    Karhunen, J.2    Oja, E.3
  • 11
    • 0033114190 scopus 로고    scopus 로고
    • An experimental comparison of neural algorithms for Independent Component Analysis and Blind Separation
    • X. Giannakopoulos, J. Karhunen, and E. Oja. An experimental comparison of neural algorithms for Independent Component Analysis and Blind Separation. Int. J. Neural Systems, 9: 99-114, 1999.
    • (1999) Int. J. Neural Systems , vol.9 , pp. 99-114
    • Giannakopoulos, X.1    Karhunen, J.2    Oja, E.3
  • 12
    • 0030322997 scopus 로고    scopus 로고
    • Simple neuron models for independent component analysis
    • A. Hyvärinen and E. Oja. Simple neuron models for independent component analysis. Int. Journal of Neural Systems, 7: 671-687, 1996.
    • (1996) Int. Journal of Neural Systems , vol.7 , pp. 671-687
    • Hyvärinen, A.1    Oja, E.2
  • 13
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9: 1483-1492, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 14
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general non-linear Hebbian-like learning rules
    • A. Hyvärinen and E. Oja. Independent component analysis by general non-linear Hebbian-like learning rules. Signal Processing, 64: 301-313, 1998.
    • (1998) Signal Processing , vol.64 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 15
    • 19544368947 scopus 로고    scopus 로고
    • Denoising of sensory data by maximum likelihood estimation of sparse components
    • Sept. 2-4, Skövde, Sweden
    • A. Hyvärinen. Denoising of sensory data by maximum likelihood estimation of sparse components. Proc. Int. Conf. on Artificial Neural Networks ICANN'98, Sept. 2-4, 1998, Skövde, Sweden.
    • (1998) Proc. Int. Conf. on Artificial Neural Networks ICANN'98
    • Hyvärinen, A.1
  • 16
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 17
    • 0001547599 scopus 로고
    • Independent component analysis (INCA) versus independent component analysis
    • (J. Lacoume et al, eds.), Elsevier
    • C. Jutten and J. Herault. Independent component analysis (INCA) versus independent component analysis. In Signal Processing IV: Theories and Applications (J. Lacoume et al, eds.), Elsevier, 643-646, 1988.
    • (1988) Signal Processing IV: Theories and Applications , pp. 643-646
    • Jutten, C.1    Herault, J.2
  • 20
    • 84962431217 scopus 로고    scopus 로고
    • Time series prediction with Independent Component Analysis
    • To appear
    • S. Malaroiu, K. Kiviluoto, and E. Oja. Time series prediction with Independent Component Analysis. To appear in Proc. AIT99.
    • Proc. AIT99
    • Malaroiu, S.1    Kiviluoto, K.2    Oja, E.3
  • 22
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17: 25-45, 1997.
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 23
    • 0032212841 scopus 로고    scopus 로고
    • From neural learning to independent components
    • E. Oja. From neural learning to independent components. Neurocomputing, 22: 187-200, 1998.
    • (1998) Neurocomputing , vol.22 , pp. 187-200
    • Oja, E.1
  • 24
    • 0032213786 scopus 로고    scopus 로고
    • Blind source separation using algorithmic information theory
    • P. Pajunen. Blind source separation using algorithmic information theory. Neurocomputing, 22: 35-48, 1998.
    • (1998) Neurocomputing , vol.22 , pp. 35-48
    • Pajunen, P.1
  • 25
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
    • H. Yang and S. Amari. Adaptive online learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural Computation, 9: 1457-1482, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.1    Amari, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.