-
1
-
-
0036495139
-
Strong converse for identification via quantum channels
-
R. Ahlswede, A. Winter, Strong converse for identification via quantum channels, IEEE Trans. Inf. Theory48(3), 569-579 (2002).
-
(2002)
IEEE Trans. Inf. Theory
, vol.48
, Issue.3
, pp. 569-579
-
-
Ahlswede, R.1
Winter, A.2
-
3
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
R. G. Baraniuk, M. Davenport, R. A. DeVore, M. Wakin, A simple proof of the restricted isometry property for random matrices, Constr. Approx. 28(3), 253-263 (2008).
-
(2008)
Constr. Approx.
, vol.28
, Issue.3
, pp. 253-263
-
-
Baraniuk, R.G.1
Davenport, M.2
Devore, R.A.3
Wakin, M.4
-
4
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H. Bauschke, H. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38(3), 367-426 (1996).
-
(1996)
SIAM Rev.
, vol.38
, Issue.3
, pp. 367-426
-
-
Bauschke, H.1
Borwein, H.2
-
5
-
-
0001184615
-
Harmonic analysis of neural networks
-
E. J. Candès, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal. 6(2), 197-218 (1999).
-
(1999)
Appl. Comput. Harmon. Anal.
, vol.6
, Issue.2
, pp. 197-218
-
-
Candès, E.J.1
-
6
-
-
0242679765
-
Ridgelets: estimating with ridge functions
-
E. J. Candès, Ridgelets: estimating with ridge functions, Ann. Stat. 31(5), 1561-1599 (2003).
-
(2003)
Ann. Stat.
, vol.31
, Issue.5
, pp. 1561-1599
-
-
Candès, E.J.1
-
7
-
-
0346727379
-
Ridgelets: a key to higher-dimensional intermittency?
-
E. J. Candès, D. L. Donoho, Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 357(1760), 2495-2509 (1999).
-
(1999)
Philos. Trans. R. Soc., Math. Phys. Eng. Sci.
, vol.357
, Issue.1760
, pp. 2495-2509
-
-
Candès, E.J.1
Donoho, D.L.2
-
8
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
E. J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. 59(8), 1207-1223 (2006).
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.8
, pp. 1207-1223
-
-
Candès, E.J.1
Romberg, J.2
Tao, T.3
-
9
-
-
34548275795
-
The Dantzig selector: statistical estimation when p is much larger than n
-
E. J. Candès, T. Tao, The Dantzig selector: statistical estimation when p is much larger than n, Ann. Stat. 35(6), 2313-2351 (2007).
-
(2007)
Ann. Stat.
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candès, E.J.1
Tao, T.2
-
10
-
-
57349181932
-
Compressed sensing and best k-term approximation
-
A. Cohen, W. Dahmen, R. A. DeVore, Compressed sensing and best k-term approximation, J. Am. Math. Soc. 22(1), 211-231 (2009).
-
(2009)
J. Am. Math. Soc.
, vol.22
, Issue.1
, pp. 211-231
-
-
Cohen, A.1
Dahmen, W.2
Devore, R.A.3
-
11
-
-
84857356357
-
Capturing ridge functions in high dimensions from point queries
-
A. Cohen, I. Daubechies, R. A. DeVore, G. Kerkyacharian, D. Picard, Capturing ridge functions in high dimensions from point queries, Constr. Approx. 35(2), 225-243 (2012).
-
(2012)
Constr. Approx.
, vol.35
, Issue.2
, pp. 225-243
-
-
Cohen, A.1
Daubechies, I.2
Devore, R.A.3
Kerkyacharian, G.4
Picard, D.5
-
14
-
-
33645712892
-
Compressed sensing
-
D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory52(4), 1289-1306 (2006).
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
15
-
-
0142257025
-
-
Ph. D. thesis, Stanford University, Palo Alto, CA
-
M. Fazel, Matrix rank minimization with applications, Ph. D. thesis, Stanford University, Palo Alto, CA, 2002.
-
(2002)
Matrix rank minimization with applications
-
-
Fazel, M.1
-
16
-
-
84858748978
-
Numerical methods for sparse recovery
-
Radon Series on Computational and Applied Mathematics, M. Fornasier (Ed.), Berlin: De Gruyter
-
M. Fornasier, Numerical methods for sparse recovery, in Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier, Radon Series on Computational and Applied Mathematics (De Gruyter, Berlin, 2010).
-
(2010)
Theoretical Foundations and Numerical Methods for Sparse Recovery
-
-
Fornasier, M.1
-
17
-
-
80053393975
-
Compressive sensing
-
O. Scherzer (Ed.), Berlin: Springer
-
M. Fornasier, H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imaging, vol. 1, ed. by O. Scherzer (Springer, Berlin, 2010), pp. 187-229.
-
(2010)
Handbook of Mathematical Methods in Imaging
, vol.1
, pp. 187-229
-
-
Fornasier, M.1
Rauhut, H.2
-
19
-
-
0004236492
-
-
3rd edn., Baltimore: Johns Hopkins University Press
-
G. Golub, C. F. van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996).
-
(1996)
Matrix Computations
-
-
Golub, G.1
van Loan, C.F.2
-
22
-
-
84972564972
-
Optimal reconstruction of a function from its projections
-
B. F. Logan, L. A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J. 42(4), 645-659 (1975).
-
(1975)
Duke Math. J.
, vol.42
, Issue.4
, pp. 645-659
-
-
Logan, B.F.1
Shepp, L.A.2
-
23
-
-
84876684662
-
-
EMS Tracts in Mathematics, Zürich: Eur. Math. Soc
-
E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS Tracts in Mathematics, vol. 6 (Eur. Math. Soc., Zürich, 2008).
-
(2008)
Tractability of Multivariate Problems, Volume I: Linear Information
, vol.6
-
-
Novak, E.1
Woźniakowski, H.2
-
24
-
-
67649103535
-
Approximation of infinitely differentiable multivariate functions is intractable
-
E. Novak, H. Woźniakowski, Approximation of infinitely differentiable multivariate functions is intractable, J. Complex. 25, 398-404 (2009).
-
(2009)
J. Complex.
, vol.25
, pp. 398-404
-
-
Novak, E.1
Woźniakowski, H.2
-
25
-
-
77955434395
-
Sums of random Hermitian matrices and an inequality by Rudelson
-
R. I. Oliveira, Sums of random Hermitian matrices and an inequality by Rudelson, Electron. Commun. Probab. 15, 203-212 (2010).
-
(2010)
Electron. Commun. Probab.
, vol.15
, pp. 203-212
-
-
Oliveira, R.I.1
-
27
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8, 143-195 (1999).
-
(1999)
Acta Numer.
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
28
-
-
78549288866
-
Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, P. Parillo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev. 52(3), 471-501 (2010).
-
(2010)
SIAM Rev.
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parillo, P.3
-
29
-
-
34547728320
-
Sampling from large matrices: an approach through geometric functional analysis
-
21
-
M. Rudelson, R. Vershynin, Sampling from large matrices: an approach through geometric functional analysis, J. ACM54(4), 21 (2007) 19 pp.
-
(2007)
J. ACM
, vol.54
, Issue.4
, pp. 19
-
-
Rudelson, M.1
Vershynin, R.2
-
30
-
-
0003449868
-
-
New York: Springer
-
n (Springer, New York, 1980).
-
(1980)
n
-
-
Rudin, W.1
-
31
-
-
80051623744
-
Compressed learning of high-dimensional sparse functions
-
K. Schnass, J. Vybíral, Compressed learning of high-dimensional sparse functions, in Proc. ICASSP11 (2011).
-
(2011)
Proc. ICASSP11
-
-
Schnass, K.1
Vybíral, J.2
-
32
-
-
0002531708
-
Perturbation theory for the singular value decomposition
-
R. J. Vacarro (Ed.), Elsevier: Amsterdam
-
G. W. Stewart, Perturbation theory for the singular value decomposition, in SVD and Signal Processing, II, ed. by R. J. Vacarro (Amsterdam, Elsevier, 1991).
-
(1991)
SVD and Signal Processing, II
-
-
Stewart, G.W.1
-
33
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
doi:10.1007/s10208-011-9099-z
-
J. A. Tropp, User-friendly tail bounds for sums of random matrices, Found. Comput. Math. (2011). doi: 10. 1007/s10208-011-9099-z.
-
(2011)
Found. Comput. Math.
-
-
Tropp, J.A.1
-
34
-
-
0002790288
-
Perturbation bounds in connection with singular value decomposition
-
P.-A. Wedin, Perturbation bounds in connection with singular value decomposition, BIT12, 99-111 (1972).
-
(1972)
Bit
, vol.12
, pp. 99-111
-
-
Wedin, P.-A.1
-
35
-
-
0001117305
-
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
-
H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71, 441-479 (1912).
-
(1912)
Math. Ann.
, vol.71
, pp. 441-479
-
-
Weyl, H.1
|