-
2
-
-
0036495139
-
Winter. Strong converse for identification via quantum channels
-
Rudolf Ahlswede and Andreas A “Winter. Strong converse for identification via quantum channels." IEEE Transactions on Information Theory 48(3): 569-579, 2002.
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, Issue.3
, pp. 569-579
-
-
Ahlswede, R.1
Andreas, A.2
-
3
-
-
0035607466
-
Operator Khintchine inequality in non commutative probability
-
Artur Buchholz. “Operator Khintchine inequality in non commutative probability." Mathematische Annalen 319, 1-Ű16, 2001.
-
(2001)
Mathematische Annalen
, vol.319
-
-
Buchholz, A.1
-
4
-
-
34249687049
-
Sparsity and incoherence in compressive sampling
-
Emmanuel Candès and Justin Romberg. “Sparsity and incoherence in compressive sampling." Inverse Problems 23:969Ű-985, 2007.
-
(2007)
Inverse Problems
, vol.23
-
-
Candès, E.1
Romberg, J.2
-
5
-
-
51249182622
-
The eigenvalues of random symmetric matrices
-
Zoltan Füredi and János Komlós. “The eigenvalues of random symmetric matrices." Combi-natorica 1(3): 233-241, 1981.
-
(1981)
Combi-Natorica
, vol.1
, Issue.3
, pp. 233-241
-
-
Füredi, Z.1
Komlós, J.2
-
6
-
-
0000313233
-
Lower Bounds for the Helmholtz Function
-
Sidney Golden. “Lower Bounds for the Helmholtz Function." Physical Review 137: B1127Ű-B1128,1965.
-
(1965)
Physical Review
, vol.137
-
-
Golden, S.1
-
8
-
-
5344256280
-
Random Cayley graphs are expanders: A simplified proof of the Alon-Roichman theorem
-
Paper 62, electronic
-
Zeph Landau and Alexander Russell. “Random Cayley graphs are expanders: a simplified proof of the Alon-Roichman theorem." Electronic Journal of Combinatorics Research Paper 62, 6 pp. (electronic), 2004.
-
(2004)
Electronic Journal of Combinatorics Research
, pp. 6
-
-
Landau, Z.1
Russell, A.2
-
10
-
-
0000426206
-
Non commutative Khintchine and Paley inequalities
-
Françoise Lust-Piquard and Gilles Pisier. “Non commutative Khintchine and Paley inequalities." Arkiv för Matematik, 29(2): 241-260, 1991.
-
(1991)
Arkiv för Matematik
, vol.29
, Issue.2
, pp. 241-260
-
-
Lust-Piquard, F.1
Pisier, G.2
-
11
-
-
44249120165
-
On singular values of matrices with independent rows
-
Shahar Mendelson and Alain Pajor. “On singular values of matrices with independent rows". Bernoulli 12(5): 761-773, 2006.
-
(2006)
Bernoulli
, vol.12
, Issue.5
, pp. 761-773
-
-
Mendelson, S.1
Pajor, A.2
-
12
-
-
0033541884
-
Random vectors in the isotropic position
-
Mark Rudelson. “Random vectors in the isotropic position.” Journal of Functional Analysis, 164 (1): 60-72, 1999.
-
(1999)
Journal of Functional Analysis
, vol.164
, Issue.1
, pp. 60-72
-
-
Rudelson, M.1
-
13
-
-
34547728320
-
Sampling from large matrices: An approach through geometric functional analysis
-
Article 21
-
Mark Rudelson and Roman Vershynin. “Sampling from large matrices: an approach through geometric functional analysis." Journal of the ACM 54(4): Article 21, 2007.
-
(2007)
Journal of the ACM
, vol.54
, Issue.4
-
-
Rudelson, M.1
Vershynin, R.2
-
15
-
-
0001368415
-
Inequality with applications in statistical mechanics
-
Colin J. Thompson. “Inequality with applications in statistical mechanics." Journal of Mathematical Physics, 6: 1812-1813, 1965.
-
(1965)
Journal of Mathematical Physics
, vol.6
, pp. 1812-1813
-
-
Thompson, C.J.1
-
16
-
-
44249104733
-
On the conditioning of random subdictionaries
-
Joel A. Tropp. “On the conditioning of random subdictionaries." Applied and Computational Harmonic Analysis 25(1): 1-24, 2008.
-
(2008)
Applied and Computational Harmonic Analysis
, vol.25
, Issue.1
, pp. 1-24
-
-
Tropp, J.A.1
-
17
-
-
13844297102
-
Frame expansions with erasures: An approach through the noncommutative operator theory
-
Roman Vershynin. “Frame expansions with erasures: an approach through the noncommutative operator theory." Applied and Computational Harmonic Analysis 18: 167-176, 2005.
-
(2005)
Applied and Computational Harmonic Analysis
, vol.18
, pp. 167-176
-
-
Vershynin, R.1
-
18
-
-
84877912355
-
Spectral norm of products of random and deterministic matrices
-
Roman Vershynin. “Spectral norm of products of random and deterministic matrices." To appear in Probability Theory and Related Fields.
-
Probability Theory and Related Fields
-
-
Vershynin, R.1
|