메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1723-1731

Kernels and learning curves for Gaussian process regression on random graphs

Author keywords

[No Author keywords available]

Indexed keywords

FORESTRY; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC);

EID: 84858742062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (18)
  • 1
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D S Touretzky, M C Mozer, and M E Hasselmo, editors Cambridge, MA MIT Press
    • C E Rasmussen and C K I Williams. Gaussian processes for regression. In D S Touretzky, M C Mozer, and M E Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 2
    • 84858745127 scopus 로고    scopus 로고
    • Regression with Gaussian processes: Average case performance
    • I K Kwok-Yee, M Wong, I King, and Dit-Yun Yeung, editors Springer
    • M Opper. Regression with Gaussian processes: Average case performance. In I K Kwok-Yee, M Wong, I King, and Dit-Yun Yeung, editors, Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective, pages 17-23. Springer, 1997.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 17-23
    • Opper, M.1
  • 3
    • 84898945810 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes
    • M S Kearns, S A Solla, and D A Cohn, editors Cambridge, MA MIT Press
    • P Sollich. Learning curves for Gaussian processes. In M S Kearns, S A Solla, and D A Cohn, editors, Advances in Neural Information Processing Systems 11, pages 344-350, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 344-350
    • Sollich, P.1
  • 4
    • 0343244538 scopus 로고    scopus 로고
    • General bounds on bayes errors for regression with Gaussian processes
    • M Kearns, S A Solla, and D Cohn, editors Cambridge, MA MIT Press
    • M Opper and F Vivarelli. General bounds on Bayes errors for regression with Gaussian processes. In M Kearns, S A Solla, and D Cohn, editors, Advances in Neural Information Processing Systems 11, pages 302-308, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 302-308
    • Opper, M.1    Vivarelli, F.2
  • 5
    • 0033686947 scopus 로고    scopus 로고
    • Upper and lower bounds on the learning curve for Gaussian processes
    • C K I Williams and F Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes. Mach. Learn., 40(1):77-102, 2000.
    • (2000) Mach. Learn. , vol.40 , Issue.1 , pp. 77-102
    • Williams, C.K.I.1    Vivarelli, F.2
  • 6
    • 84898952221 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes regression: A framework for good approximations
    • T K Leen, T G Dietterich, and V Tresp, editors Cambridge, MA MIT Press
    • D Malzahn and M Opper. Learning curves for Gaussian processes regression: A framework for good approximations. In T K Leen, T G Dietterich, and V Tresp, editors, Advances in Neural Information Processing Systems 13, pages 273-279, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 273-279
    • Malzahn, D.1    Opper, M.2
  • 7
    • 84898957671 scopus 로고    scopus 로고
    • A variational approach to learning curves
    • T G Dietterich, S Becker, and Z Ghahramani, editors Cambridge, MA MIT Press
    • D Malzahn and M Opper. A variational approach to learning curves. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 463-469, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 463-469
    • Malzahn, D.1    Opper, M.2
  • 8
    • 0039489976 scopus 로고    scopus 로고
    • Learning curves for Gaussian process regression: Approximations and bounds
    • P Sollich and A Halees. Learning curves for Gaussian process regression: approximations and bounds. Neural Comput., 14(6):1393-1428, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.6 , pp. 1393-1428
    • Sollich, P.1    Halees, A.2
  • 9
    • 84899031850 scopus 로고    scopus 로고
    • Gaussian process regression with mismatched models
    • T G Dietterich, S Becker, and Z Ghahramani, editors Cambridge, MA MIT Press
    • P Sollich. Gaussian process regression with mismatched models. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 519-526, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 519-526
    • Sollich, P.1
  • 10
    • 33645970424 scopus 로고    scopus 로고
    • Can Gaussian process regression be made robust against model mismatch?
    • of Lecture Notes in Artificial Intelligence
    • P Sollich. Can Gaussian process regression be made robust against model mismatch? In Deterministic and Statistical Methods in Machine Learning, volume 3635 of Lecture Notes in Artificial Intelligence, pages 199-210. 2005.
    • (2005) Deterministic and Statistical Methods in Machine Learning , vol.3635 , pp. 199-210
    • Sollich, P.1
  • 15
    • 0033444831 scopus 로고    scopus 로고
    • Generating random regular graphs quickly
    • A Steger and N C Wormald. Generating random regular graphs quickly. Combinator. Probab. Comput., 8(4):377-396, 1999.
    • (1999) Combinator. Probab. Comput. , vol.8 , Issue.4 , pp. 377-396
    • Steger, A.1    Wormald, N.C.2
  • 17
    • 0042172389 scopus 로고    scopus 로고
    • Random walk on the bethe lattice and hyperbolic brownian motion
    • C Monthus and C Texier. Random walk on the Bethe lattice and hyperbolic brownian motion. J. Phys. A, 29(10):2399-2409, 1996.
    • (1996) J. Phys. A , vol.29 , Issue.10 , pp. 2399-2409
    • Monthus, C.1    Texier, C.2
  • 18
    • 51849106455 scopus 로고    scopus 로고
    • Cavity approach to the spectral density of sparse symmetric random matrices
    • T Rogers, I Perez Castillo, R Kuehn, and K Takeda. Cavity approach to the spectral density of sparse symmetric random matrices. Phys. Rev. E, 78(3):031116, 2008.
    • (2008) Phys. Rev. E , vol.78 , Issue.3 , pp. 031116
    • Rogers, T.1    Perez Castillo, I.2    Kuehn, R.3    Takeda, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.