-
1
-
-
85072768928
-
Gaussian processes for regression
-
D S Touretzky, M C Mozer, and M E Hasselmo, editors, Cambridge, MA, MIT Press
-
C K I Williams and C E Rasmussen. Gaussian processes for regression. In D S Touretzky, M C Mozer, and M E Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
2
-
-
84898974226
-
Computing with infinite networks
-
M C Mozer, M I Jordan, and T Petsche, editors, Cambridge, MA, MIT Press
-
C K I Williams. Computing with infinite networks. In M C Mozer, M I Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9, pages 295-301, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 295-301
-
-
Williams, C.K.I.1
-
3
-
-
0000308194
-
Gaussian processes for Bayesian classification via hybrid Monte Carlo
-
M C Mozer, M I Jordan, and T Petsche, editors, Cambridge, MA, MIT Press
-
D Barber and C K I Williams. Gaussian processes for Bayesian classification via hybrid Monte Carlo. In M C Mozer, M I Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9, pages 340-346, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 340-346
-
-
Barber, D.1
Williams, C.K.I.2
-
4
-
-
0040424226
-
Regression with input-dependent noise: A Gaussian process treatment
-
M I Jordan, M J Kearns, and S A Solla, editors, Cambridge, MA, MIT Press
-
P W Goldberg, C K I Williams, and C M Bishop. Regression with input-dependent noise: A Gaussian process treatment. In M I Jordan, M J Kearns, and S A Solla, editors, Advances in Neural Information Processing Systems 10, pages 493-499, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 493-499
-
-
Goldberg, P.W.1
Williams, C.K.I.2
Bishop, C.M.3
-
5
-
-
84898945810
-
Learning curves for Gaussian processes
-
M S Kearns, S A Solla, and D A Cohn, editors, Cambridge, MA, MIT Press
-
P Sollich. Learning curves for Gaussian processes. In M S Kearns, S A Solla, and D A Cohn, editors, Advances in Neural Information Processing Systems 11, pages 344-350, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 344-350
-
-
Sollich, P.1
-
6
-
-
0001609938
-
Efficient approaches to gaussian process classification
-
S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
-
Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, and Ole Winther. Efficient approaches to gaussian process classification. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 251-257, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 251-257
-
-
Csató, L.1
Fokoué, E.2
Opper, M.3
Schottky, B.4
Winther, O.5
-
7
-
-
84898952221
-
Learning curves for Gaussian processes regression: A framework for good approximations
-
T K Leen, T G Dietterich, and V Tresp, editors, Cambridge, MA, MIT Press
-
D Malzahn and M Opper. Learning curves for Gaussian processes regression: A framework for good approximations. In T K Leen, T G Dietterich, and V Tresp, editors, Advances in Neural Information Processing Systems 13, pages 273-279, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 273-279
-
-
Malzahn, D.1
Opper, M.2
-
8
-
-
0011353056
-
Learning curves for Gaussian processes models: Fluctuations and universality
-
D Malzahn and M Opper. Learning curves for Gaussian processes models: fluctuations and universality. Lect. Notes Comp. Sci., 2130:271-276, 2001.
-
(2001)
Lect. Notes Comp. Sci.
, vol.2130
, pp. 271-276
-
-
Malzahn, D.1
Opper, M.2
-
9
-
-
84898957671
-
A variational approach to learning curves
-
T G Dietterich, S Becker, and Z Ghahramani, editors, Cambridge, MA, MIT Press
-
D Malzahn and M Opper. A variational approach to learning curves. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 463-469, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 463-469
-
-
Malzahn, D.1
Opper, M.2
-
10
-
-
0039489976
-
Learning curves for Gaussian process regression: Approximations and bounds
-
P Sollich and A Halees. Learning curves for Gaussian process regression: approximations and bounds. Neural Comput., 14(6):1393-1428, 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.6
, pp. 1393-1428
-
-
Sollich, P.1
Halees, A.2
-
11
-
-
84899031850
-
Gaussian process regression with mismatched models
-
T G Dietterich, S Becker, and Z Ghahramani, editors, Cambridge, MA, MIT Press
-
P Sollich. Gaussian process regression with mismatched models. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 519-526, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 519-526
-
-
Sollich, P.1
-
12
-
-
0002417069
-
Design problems for optimal surface interpolation
-
Z Ziegler, editor, Academic Press
-
C A Michelli and G Wahba. Design problems for optimal surface interpolation. In Z Ziegler, editor, Approximation theory and applications, pages 329-348. Academic Press, 1981.
-
(1981)
Approximation Theory and Applications
, pp. 329-348
-
-
Michelli, C.A.1
Wahba, G.2
-
13
-
-
0033686947
-
Upper and lower bounds on the learning curve for Gaussian processes
-
C K I Williams and F Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes. Mach. Learn., 40(1):77-102, 2000.
-
(2000)
Mach. Learn.
, vol.40
, Issue.1
, pp. 77-102
-
-
Williams, C.K.I.1
Vivarelli, F.2
-
14
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M I Jordan, editor, Kluwer Academic
-
C K I Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M I Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer Academic, 1998.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
15
-
-
12444291490
-
Gaussian processes for machine learning
-
M Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14(2):69-106, 2004.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.2
, pp. 69-106
-
-
Seeger, M.1
-
16
-
-
0035820749
-
Universal learning curves of Support Vector Machines
-
M Opper and R Urbanczik. Universal learning curves of Support Vector Machines. Phys. Rev. Lett., 86(19):4410-4413, 2001.
-
(2001)
Phys. Rev. Lett.
, vol.86
, Issue.19
, pp. 4410-4413
-
-
Opper, M.1
Urbanczik, R.2
-
17
-
-
0000149970
-
Statistical mechanics of Support Vector Networks
-
R Dietrich, M Opper, and H Sompolinsky. Statistical mechanics of Support Vector Networks. Phys. Rev. Lett., 82(14):2975-2978, 1999.
-
(1999)
Phys. Rev. Lett.
, vol.82
, Issue.14
, pp. 2975-2978
-
-
Dietrich, R.1
Opper, M.2
Sompolinsky, H.3
-
18
-
-
0000395622
-
Field theories for learning probability distributions
-
W Bialek, C G Callan, and S P Strong. Field theories for learning probability distributions. Phys. Rev. Lett., 77(23):4693-4697, 1996.
-
(1996)
Phys. Rev. Lett.
, vol.77
, Issue.23
, pp. 4693-4697
-
-
Bialek, W.1
Callan, C.G.2
Strong, S.P.3
-
19
-
-
4243943088
-
Analysis of data from continuous probability distributions
-
T E Holy. Analysis of data from continuous probability distributions. Phys. Rev. Lett., 79(19):3545-3548, 1997.
-
(1997)
Phys. Rev. Lett.
, vol.79
, Issue.19
, pp. 3545-3548
-
-
Holy, T.E.1
-
20
-
-
4243588527
-
Reparametrization invariant statistical inference and gravity
-
V Periwal. Reparametrization invariant statistical inference and gravity. Phys. Rev. Lett., 78(25):4671-4674, 1997.
-
(1997)
Phys. Rev. Lett.
, vol.78
, Issue.25
, pp. 4671-4674
-
-
Periwal, V.1
-
21
-
-
0033575644
-
Geometric statistical inference
-
V Periwal. Geometric statistical inference. Nucl. Phys. B, 554(3):719-730, 1999.
-
(1999)
Nucl. Phys. B
, vol.554
, Issue.3
, pp. 719-730
-
-
Periwal, V.1
-
22
-
-
0000430886
-
Field theoretical analysis of on-line learning of probability distributions
-
T Aida. Field theoretical analysis of on-line learning of probability distributions. Phys. Rev. Lett., 83(17):3554-3557, 1999.
-
(1999)
Phys. Rev. Lett.
, vol.83
, Issue.17
, pp. 3554-3557
-
-
Aida, T.1
-
23
-
-
0034135891
-
Continuous probability distributions from finite data
-
D M Schmidt. Continuous probability distributions from finite data. Phys. Rev. E, 61(2):1052-1055, 2000.
-
(2000)
Phys. Rev. E
, vol.61
, Issue.2
, pp. 1052-1055
-
-
Schmidt, D.M.1
-
24
-
-
18144454093
-
Reparametrization-covariant theory for on-line learning of probability distributions
-
T Aida. Reparametrization-covariant theory for on-line learning of probability distributions. Phys. Rev. E, 64:056128, 2001.
-
(2001)
Phys. Rev. E
, vol.64
, pp. 056128
-
-
Aida, T.1
-
25
-
-
37649028546
-
Occam factors and model independent Bayesian learning of continuous distributions
-
I Nemenman and W Bialek. Occam factors and model independent Bayesian learning of continuous distributions. Phys. Rev. E, 65:026137, 2002.
-
(2002)
Phys. Rev. E
, vol.65
, pp. 026137
-
-
Nemenman, I.1
Bialek, W.2
|