메뉴 건너뛰기




Volumn 3635 LNAI, Issue , 2005, Pages 199-210

Can Gaussian process regression be made robust against model mismatch?

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; LEARNING SYSTEMS; REGRESSION ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS); SET THEORY;

EID: 33645970424     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11559887_12     Document Type: Conference Paper
Times cited : (9)

References (25)
  • 1
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D S Touretzky, M C Mozer, and M E Hasselmo, editors, Cambridge, MA, MIT Press
    • C K I Williams and C E Rasmussen. Gaussian processes for regression. In D S Touretzky, M C Mozer, and M E Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 2
    • 84898974226 scopus 로고    scopus 로고
    • Computing with infinite networks
    • M C Mozer, M I Jordan, and T Petsche, editors, Cambridge, MA, MIT Press
    • C K I Williams. Computing with infinite networks. In M C Mozer, M I Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9, pages 295-301, Cambridge, MA, 1997. MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 295-301
    • Williams, C.K.I.1
  • 3
    • 0000308194 scopus 로고    scopus 로고
    • Gaussian processes for Bayesian classification via hybrid Monte Carlo
    • M C Mozer, M I Jordan, and T Petsche, editors, Cambridge, MA, MIT Press
    • D Barber and C K I Williams. Gaussian processes for Bayesian classification via hybrid Monte Carlo. In M C Mozer, M I Jordan, and T Petsche, editors, Advances in Neural Information Processing Systems 9, pages 340-346, Cambridge, MA, 1997. MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 340-346
    • Barber, D.1    Williams, C.K.I.2
  • 4
    • 0040424226 scopus 로고    scopus 로고
    • Regression with input-dependent noise: A Gaussian process treatment
    • M I Jordan, M J Kearns, and S A Solla, editors, Cambridge, MA, MIT Press
    • P W Goldberg, C K I Williams, and C M Bishop. Regression with input-dependent noise: A Gaussian process treatment. In M I Jordan, M J Kearns, and S A Solla, editors, Advances in Neural Information Processing Systems 10, pages 493-499, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 493-499
    • Goldberg, P.W.1    Williams, C.K.I.2    Bishop, C.M.3
  • 5
    • 84898945810 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes
    • M S Kearns, S A Solla, and D A Cohn, editors, Cambridge, MA, MIT Press
    • P Sollich. Learning curves for Gaussian processes. In M S Kearns, S A Solla, and D A Cohn, editors, Advances in Neural Information Processing Systems 11, pages 344-350, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 344-350
    • Sollich, P.1
  • 6
    • 0001609938 scopus 로고    scopus 로고
    • Efficient approaches to gaussian process classification
    • S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Cambridge, MA, MIT Press
    • Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, and Ole Winther. Efficient approaches to gaussian process classification. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12, pages 251-257, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 251-257
    • Csató, L.1    Fokoué, E.2    Opper, M.3    Schottky, B.4    Winther, O.5
  • 7
    • 84898952221 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes regression: A framework for good approximations
    • T K Leen, T G Dietterich, and V Tresp, editors, Cambridge, MA, MIT Press
    • D Malzahn and M Opper. Learning curves for Gaussian processes regression: A framework for good approximations. In T K Leen, T G Dietterich, and V Tresp, editors, Advances in Neural Information Processing Systems 13, pages 273-279, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 273-279
    • Malzahn, D.1    Opper, M.2
  • 8
    • 0011353056 scopus 로고    scopus 로고
    • Learning curves for Gaussian processes models: Fluctuations and universality
    • D Malzahn and M Opper. Learning curves for Gaussian processes models: fluctuations and universality. Lect. Notes Comp. Sci., 2130:271-276, 2001.
    • (2001) Lect. Notes Comp. Sci. , vol.2130 , pp. 271-276
    • Malzahn, D.1    Opper, M.2
  • 9
    • 84898957671 scopus 로고    scopus 로고
    • A variational approach to learning curves
    • T G Dietterich, S Becker, and Z Ghahramani, editors, Cambridge, MA, MIT Press
    • D Malzahn and M Opper. A variational approach to learning curves. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 463-469, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 463-469
    • Malzahn, D.1    Opper, M.2
  • 10
    • 0039489976 scopus 로고    scopus 로고
    • Learning curves for Gaussian process regression: Approximations and bounds
    • P Sollich and A Halees. Learning curves for Gaussian process regression: approximations and bounds. Neural Comput., 14(6):1393-1428, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.6 , pp. 1393-1428
    • Sollich, P.1    Halees, A.2
  • 11
    • 84899031850 scopus 로고    scopus 로고
    • Gaussian process regression with mismatched models
    • T G Dietterich, S Becker, and Z Ghahramani, editors, Cambridge, MA, MIT Press
    • P Sollich. Gaussian process regression with mismatched models. In T G Dietterich, S Becker, and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 519-526, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 519-526
    • Sollich, P.1
  • 12
    • 0002417069 scopus 로고
    • Design problems for optimal surface interpolation
    • Z Ziegler, editor, Academic Press
    • C A Michelli and G Wahba. Design problems for optimal surface interpolation. In Z Ziegler, editor, Approximation theory and applications, pages 329-348. Academic Press, 1981.
    • (1981) Approximation Theory and Applications , pp. 329-348
    • Michelli, C.A.1    Wahba, G.2
  • 13
    • 0033686947 scopus 로고    scopus 로고
    • Upper and lower bounds on the learning curve for Gaussian processes
    • C K I Williams and F Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes. Mach. Learn., 40(1):77-102, 2000.
    • (2000) Mach. Learn. , vol.40 , Issue.1 , pp. 77-102
    • Williams, C.K.I.1    Vivarelli, F.2
  • 14
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M I Jordan, editor, Kluwer Academic
    • C K I Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M I Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer Academic, 1998.
    • (1998) Learning and Inference in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 15
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • M Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14(2):69-106, 2004.
    • (2004) International Journal of Neural Systems , vol.14 , Issue.2 , pp. 69-106
    • Seeger, M.1
  • 16
    • 0035820749 scopus 로고    scopus 로고
    • Universal learning curves of Support Vector Machines
    • M Opper and R Urbanczik. Universal learning curves of Support Vector Machines. Phys. Rev. Lett., 86(19):4410-4413, 2001.
    • (2001) Phys. Rev. Lett. , vol.86 , Issue.19 , pp. 4410-4413
    • Opper, M.1    Urbanczik, R.2
  • 17
    • 0000149970 scopus 로고    scopus 로고
    • Statistical mechanics of Support Vector Networks
    • R Dietrich, M Opper, and H Sompolinsky. Statistical mechanics of Support Vector Networks. Phys. Rev. Lett., 82(14):2975-2978, 1999.
    • (1999) Phys. Rev. Lett. , vol.82 , Issue.14 , pp. 2975-2978
    • Dietrich, R.1    Opper, M.2    Sompolinsky, H.3
  • 18
    • 0000395622 scopus 로고    scopus 로고
    • Field theories for learning probability distributions
    • W Bialek, C G Callan, and S P Strong. Field theories for learning probability distributions. Phys. Rev. Lett., 77(23):4693-4697, 1996.
    • (1996) Phys. Rev. Lett. , vol.77 , Issue.23 , pp. 4693-4697
    • Bialek, W.1    Callan, C.G.2    Strong, S.P.3
  • 19
    • 4243943088 scopus 로고    scopus 로고
    • Analysis of data from continuous probability distributions
    • T E Holy. Analysis of data from continuous probability distributions. Phys. Rev. Lett., 79(19):3545-3548, 1997.
    • (1997) Phys. Rev. Lett. , vol.79 , Issue.19 , pp. 3545-3548
    • Holy, T.E.1
  • 20
    • 4243588527 scopus 로고    scopus 로고
    • Reparametrization invariant statistical inference and gravity
    • V Periwal. Reparametrization invariant statistical inference and gravity. Phys. Rev. Lett., 78(25):4671-4674, 1997.
    • (1997) Phys. Rev. Lett. , vol.78 , Issue.25 , pp. 4671-4674
    • Periwal, V.1
  • 21
    • 0033575644 scopus 로고    scopus 로고
    • Geometric statistical inference
    • V Periwal. Geometric statistical inference. Nucl. Phys. B, 554(3):719-730, 1999.
    • (1999) Nucl. Phys. B , vol.554 , Issue.3 , pp. 719-730
    • Periwal, V.1
  • 22
    • 0000430886 scopus 로고    scopus 로고
    • Field theoretical analysis of on-line learning of probability distributions
    • T Aida. Field theoretical analysis of on-line learning of probability distributions. Phys. Rev. Lett., 83(17):3554-3557, 1999.
    • (1999) Phys. Rev. Lett. , vol.83 , Issue.17 , pp. 3554-3557
    • Aida, T.1
  • 23
    • 0034135891 scopus 로고    scopus 로고
    • Continuous probability distributions from finite data
    • D M Schmidt. Continuous probability distributions from finite data. Phys. Rev. E, 61(2):1052-1055, 2000.
    • (2000) Phys. Rev. E , vol.61 , Issue.2 , pp. 1052-1055
    • Schmidt, D.M.1
  • 24
    • 18144454093 scopus 로고    scopus 로고
    • Reparametrization-covariant theory for on-line learning of probability distributions
    • T Aida. Reparametrization-covariant theory for on-line learning of probability distributions. Phys. Rev. E, 64:056128, 2001.
    • (2001) Phys. Rev. E , vol.64 , pp. 056128
    • Aida, T.1
  • 25
    • 37649028546 scopus 로고    scopus 로고
    • Occam factors and model independent Bayesian learning of continuous distributions
    • I Nemenman and W Bialek. Occam factors and model independent Bayesian learning of continuous distributions. Phys. Rev. E, 65:026137, 2002.
    • (2002) Phys. Rev. E , vol.65 , pp. 026137
    • Nemenman, I.1    Bialek, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.