메뉴 건너뛰기




Volumn 195, Issue 1, 2012, Pages 135-161

Evidential reasoning in large partially ordered sets

Author keywords

Belief functions; Classification; Clustering; Dempster Shafer theory; Evidence theory; Lattice intervals; Lattices; Learning; Preference relation; Preorder

Indexed keywords


EID: 84858703834     PISSN: 02545330     EISSN: 15729338     Source Type: Journal    
DOI: 10.1007/s10479-011-0887-2     Document Type: Article
Times cited : (22)

References (39)
  • 1
    • 0032362709 scopus 로고    scopus 로고
    • Lamarckian genetic algorithms applied to the aggregation of preferences
    • Charon, I., & Hudry, O. (1998). Lamarckian genetic algorithms applied to the aggregation of preferences. Annals of Operation Research, 80, 281-297.
    • (1998) Annals of Operation Research , vol.80 , pp. 281-297
    • Charon, I.1    Hudry, O.2
  • 2
    • 76849096444 scopus 로고    scopus 로고
    • An updated survey on the linear ordering problem for weighted or unweighted tournaments
    • Charon, I., & Hudry, O. (2010). An updated survey on the linear ordering problem for weighted or unweighted tournaments. Annals of Operation Research, 175, 107-158.
    • (2010) Annals of Operation Research , vol.175 , pp. 107-158
    • Charon, I.1    Hudry, O.2
  • 3
    • 33644864393 scopus 로고    scopus 로고
    • On the plausibility transformation method for translating belief function models to probability models
    • Cobb, B. R., & Shenoy, P. P. (2006). On the plausibility transformation method for translating belief function models to probability models. International Journal of Approximate Reasoning, 41(3), 314-330.
    • (2006) International Journal of Approximate Reasoning , vol.41 , Issue.3 , pp. 314-330
    • Cobb, B.R.1    Shenoy, P.P.2
  • 4
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325-339.
    • (1967) Annals of Mathematical Statistics , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 5
    • 0000582933 scopus 로고
    • Upper and lower probabilities generated by a random closed interval
    • Dempster, A. P. (1968). Upper and lower probabilities generated by a random closed interval. Annals of Mathematical Statistics, 39(3), 957-966.
    • (1968) Annals of Mathematical Statistics , vol.39 , Issue.3 , pp. 957-966
    • Dempster, A.P.1
  • 6
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denœux, T. (1995). A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man, and Cybernetics, 25(05), 804-813.
    • (1995) IEEE Transactions on Systems, Man, and Cybernetics , vol.25 , Issue.5 , pp. 804-813
    • Denœux, T.1
  • 7
    • 0031189743 scopus 로고    scopus 로고
    • Analysis of evidence-theoretic decision rules for pattern classification
    • Denœux, T. (1997). Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognition, 30(7), 1095-1107.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1095-1107
    • Denœux, T.1
  • 8
  • 9
    • 33745394396 scopus 로고    scopus 로고
    • Constructing belief functions from sample data using multinomial confidence regions
    • Denœux, T. (2006). Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning, 42(3), 228-252.
    • (2006) International Journal of Approximate Reasoning , vol.42 , Issue.3 , pp. 228-252
    • Denœux, T.1
  • 10
    • 37149055072 scopus 로고    scopus 로고
    • Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence
    • Denoeux, T. (2008). Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence. Artificial Intelligence, 172, 234-264.
    • (2008) Artificial Intelligence , vol.172 , pp. 234-264
    • Denoeux, T.1
  • 11
    • 77949851470 scopus 로고    scopus 로고
    • Representing uncertainty on set-valued variables using belief functions
    • Denoeux, T., Younes, Z., & Abdallah, F. (2010). Representing uncertainty on set-valued variables using belief functions. Artificial Intelligence, 174(7-8), 479-499.
    • (2010) Artificial Intelligence , vol.174 , Issue.7-8 , pp. 479-499
    • Denoeux, T.1    Younes, Z.2    Abdallah, F.3
  • 12
    • 84963165563 scopus 로고
    • A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets
    • Dubois, D., & Prade, H. (1986). A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. International Journal of General Systems, 12(3), 193-226.
    • (1986) International Journal of General Systems , vol.12 , Issue.3 , pp. 193-226
    • Dubois, D.1    Prade, H.2
  • 14
    • 42449158528 scopus 로고    scopus 로고
    • Cluster ensemble methods: from single clusterings to combined solutions
    • Fred, A., & Lourenço, A. (2008). Cluster ensemble methods: from single clusterings to combined solutions. Studies in Computational Intelligence (SCI), 126, 3-30.
    • (2008) Studies in Computational Intelligence (SCI) , vol.126 , pp. 3-30
    • Fred, A.1    Lourenço, A.2
  • 15
    • 34547257137 scopus 로고    scopus 로고
    • Inferring consensus weights from pairwise comparison matrices without suitable properties
    • Gonzales-Pachon, J., & Romero, C. (2007). Inferring consensus weights from pairwise comparison matrices without suitable properties. Annals of Operation Research, 154, 123-132.
    • (2007) Annals of Operation Research , vol.154 , pp. 123-132
    • Gonzales-Pachon, J.1    Romero, C.2
  • 17
    • 13644281303 scopus 로고    scopus 로고
    • Bi-capacities-I: definition, Möbius transform and interaction
    • Grabisch, M., & Labreuche, C. (2005). Bi-capacities-I: definition, Möbius transform and interaction. Fuzzy Sets and Systems, 151, 211-236.
    • (2005) Fuzzy Sets and Systems , vol.151 , pp. 211-236
    • Grabisch, M.1    Labreuche, C.2
  • 18
    • 79955473029 scopus 로고    scopus 로고
    • Ensemble methods for cluster analysis
    • Interdisciplinary studies in economics and management, A. Taudes (Ed.), Berlin: Springer
    • Hornik, K., & Leisch, F. (2005). Ensemble methods for cluster analysis. In A. Taudes (Ed.), Interdisciplinary studies in economics and management: Vol. 5. Adaptive information systems and modelling in economics and management science (pp. 261-268). Berlin: Springer.
    • (2005) Adaptive Information Systems and Modelling in Economics and Management Science , vol.5 , pp. 261-268
    • Hornik, K.1    Leisch, F.2
  • 22
    • 0141465207 scopus 로고    scopus 로고
    • The presence of lattice theory in discrete problems of mathematical social sciences. Why
    • Monjardet, B. (2003). The presence of lattice theory in discrete problems of mathematical social sciences. Why. Mathematical Social Sciences, 46(2), 103-144.
    • (2003) Mathematical Social Sciences , vol.46 , Issue.2 , pp. 103-144
    • Monjardet, B.1
  • 23
    • 34249763912 scopus 로고
    • Preferences agreement, consensus-measuring, aggregation and control
    • Owsinski, J. W. (1994). Preferences agreement, consensus-measuring, aggregation and control. Annals of Operation Research, 51(5), 217-240.
    • (1994) Annals of Operation Research , vol.51 , Issue.5 , pp. 217-240
    • Owsinski, J.W.1
  • 25
    • 0032362707 scopus 로고    scopus 로고
    • Multicriteria filtering methods based onconcordance and non-discordance principles
    • Perny, P. (1998). Multicriteria filtering methods based onconcordance and non-discordance principles. Annals of Operation Research, 80, 137-165.
    • (1998) Annals of Operation Research , vol.80 , pp. 137-165
    • Perny, P.1
  • 28
    • 0001736479 scopus 로고    scopus 로고
    • Binary joint trees for computing marginals in the Shenoy-Shafer architecture
    • Shenoy, P. P. (1997). Binary joint trees for computing marginals in the Shenoy-Shafer architecture. International Journal of Approximate Reasoning, 17, 239-263.
    • (1997) International Journal of Approximate Reasoning , vol.17 , pp. 239-263
    • Shenoy, P.P.1
  • 30
    • 0003106837 scopus 로고
    • Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem
    • Smets, P. (1993). Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning, 9, 1-35.
    • (1993) International Journal of Approximate Reasoning , vol.9 , pp. 1-35
    • Smets, P.1
  • 32
    • 0028406490 scopus 로고
    • The Transferable Belief Model
    • Smets, P., & Kennes, R. (1994). The Transferable Belief Model. Artificial Intelligence, 66, 191-243.
    • (1994) Artificial Intelligence , vol.66 , pp. 191-243
    • Smets, P.1    Kennes, R.2
  • 35
    • 0010529967 scopus 로고    scopus 로고
    • Algorithms for Dempster-Shafer theory
    • Algorithms for uncertainty and defeasible reasoning, D. M. Gabbay and P. Smets (Eds.), Boston: Kluwer Academic
    • Wilson, N. (2000). Algorithms for Dempster-Shafer theory. In D. M. Gabbay & P. Smets (Eds.), Algorithms for uncertainty and defeasible reasoning: Vol. 5. Handbook of defeasible reasoning and uncertainty management (pp. 421-475). Boston: Kluwer Academic.
    • (2000) Handbook of Defeasible Reasoning and Uncertainty Management , vol.5 , pp. 421-475
    • Wilson, N.1
  • 36
    • 0023294625 scopus 로고
    • Set-based representations of conjunctive and disjunctive knowledge
    • Yager, R. R. (1987). Set-based representations of conjunctive and disjunctive knowledge. Information Sciences, 41, 1-22.
    • (1987) Information Sciences , vol.41 , pp. 1-22
    • Yager, R.R.1
  • 38
    • 84858700277 scopus 로고    scopus 로고
    • Evidential multi-label classification approach to learning from data with imprecise labels
    • Dortmund, GermanyJuly 2010
    • Younes, Z., Abdallah, F., & Denoeux, T. (2010). Evidential multi-label classification approach to learning from data with imprecise labels. In Proceedings of IPMU, Dortmund, Germany, July 2010.
    • (2010) Proceedings of IPMU
    • Younes, Z.1    Abdallah, F.2    Denoeux, T.3
  • 39
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: a lazy learning approach to multi-label learning
    • Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.