메뉴 건너뛰기




Volumn 52, Issue 1, 2011, Pages 92-109

Ensemble clustering in the belief functions framework

Author keywords

Belief functions; Clustering; Ensemble clustering; Intervals of partitions; Lattice of partitions

Indexed keywords

BELIEF FUNCTION; CLUSTERING; ENSEMBLE CLUSTERING; INTERVALS OF PARTITIONS; LATTICE OF PARTITIONS;

EID: 78649335185     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.04.007     Document Type: Conference Paper
Times cited : (34)

References (39)
  • 2
    • 8344261811 scopus 로고    scopus 로고
    • Monotone functions on finite lattices: An ordinal approach to capacities, belief and necessity functions
    • J.-P. Barthélémy Monotone functions on finite lattices: an ordinal approach to capacities, belief and necessity functions J. Fodor, B. de Baets, P. Perny, Preferences and Decisions under Incomplete Knowledge 2000 Physica-Verlag 195 208
    • (2000) Preferences and Decisions under Incomplete Knowledge , pp. 195-208
    • Barthélémy, J.-P.1
  • 4
    • 0003194579 scopus 로고    scopus 로고
    • Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
    • Kluwer Academic Publishers Norwell, MA, USA
    • J.C. Bezdek, J. Keller, R. Krisnapuram, and N.R. Pal Fuzzy Models and Algorithms for Pattern Recognition and Image Processing Series: The Handbooks of Fuzzy Sets vol. 4 1999 Kluwer Academic Publishers Norwell, MA, USA
    • (1999) Series: The Handbooks of Fuzzy Sets , vol.4
    • Bezdek, J.C.1    Keller, J.2    Krisnapuram, R.3    Pal, N.R.4
  • 6
    • 0000747464 scopus 로고
    • Foreword: Comparison and consensus of classifications
    • W. Day Foreword: comparison and consensus of classifications Journal of Classification 3 1986 183 185
    • (1986) Journal of Classification , vol.3 , pp. 183-185
    • Day, W.1
  • 9
    • 84884293274 scopus 로고    scopus 로고
    • Weighted evidence accumulation clustering
    • S.J. Simoff, G.J. Williams, J. Galloway, I. Kolyshkina (Eds.) Discovery Data Mining, Sydney, NSW, Australia, University of Technology, Sydney
    • F.J. Duarte, A.L. Fred, A. Loureno, M.F. Rodrigues, Weighted evidence accumulation clustering, in: S.J. Simoff, G.J. Williams, J. Galloway, I. Kolyshkina (Eds.), Proceedings of the 4th Australasian Conf. Knowl. Discovery Data Mining, Sydney, NSW, Australia, University of Technology, Sydney, 2005, pp. 205-220.
    • (2005) Proceedings of the 4th Australasian Conf. Knowl , pp. 205-220
    • Duarte, F.J.1
  • 10
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • S. Dudoit, and J. Fridlyand Bagging to improve the accuracy of a clustering procedure Bioinformatics 19 9 2003 1090 1099
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 11
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J.C. Dunn Well separated clusters and optimal fuzzy partitions Journal of Cybernetics 4 1974 95 104
    • (1974) Journal of Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 16
    • 42449158528 scopus 로고    scopus 로고
    • Cluster ensemble methods: From single clusterings to combined solutions
    • A. Fred, and A. Loureno Cluster ensemble methods: from single clusterings to combined solutions Studies in Computational Intelligence (SCI) 126 2008 3 30
    • (2008) Studies in Computational Intelligence (SCI) , vol.126 , pp. 3-30
    • Fred, A.1    Loureno, A.2
  • 20
    • 79955473029 scopus 로고    scopus 로고
    • Ensemble methods for cluster analysis
    • Adaptive Information Systems and Modelling in Economics and Management Science
    • K. Hornik, and F. Leisch Ensemble methods for cluster analysis A. Taudes, Adaptive Information Systems and Modelling in Economics and Management Science Interdisciplinary Studies in Economics and Management vol. 5 2005 Springer-Verlag 261 268
    • (2005) Interdisciplinary Studies in Economics and Management , vol.5 , pp. 261-268
    • Hornik, K.1    Leisch, F.2
  • 22
    • 0031190038 scopus 로고    scopus 로고
    • Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing
    • S. Le Hégarat-Mascle, I. Bloch, and D. Vidal-Madjar Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing IEEE Transactions on Geoscience and Remote Sensing 35 4 1997 1018 1031
    • (1997) IEEE Transactions on Geoscience and Remote Sensing , vol.35 , Issue.4 , pp. 1018-1031
    • Le Hégarat-Mascle, S.1    Bloch, I.2    Vidal-Madjar, D.3
  • 23
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • E. Levine, and E. Domany Resampling method for unsupervised estimation of cluster validity Neural Computation 13 2001 2573 2593
    • (2001) Neural Computation , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 24
    • 0346216895 scopus 로고    scopus 로고
    • Clustering interval-valued data using belief functions
    • M.-H. Masson, and T. Denœux Clustering interval-valued data using belief functions Pattern Recognition Letters 25 2 2004 163 171
    • (2004) Pattern Recognition Letters , vol.25 , Issue.2 , pp. 163-171
    • Masson, M.-H.1    Denœux, T.2
  • 25
    • 36749023291 scopus 로고    scopus 로고
    • ECM: An evidential version of the fuzzy c-means algorithm
    • M.-H. Masson, and T. Denœux ECM: an evidential version of the fuzzy c-means algorithm Pattern Recognition 41 2008 1384 1397
    • (2008) Pattern Recognition , vol.41 , pp. 1384-1397
    • Masson, M.-H.1    Denœux, T.2
  • 26
    • 69049103270 scopus 로고    scopus 로고
    • Belief functions and cluster ensembles
    • ECSQARU 2009
    • M.-H. Masson, and T. Denœux Belief functions and cluster ensembles C. Sossai, G. Chemello, ECSQARU 2009 LNAI vol. 5590 2009 Springer-Verlag 323 334
    • (2009) LNAI , vol.5590 , pp. 323-334
    • Masson, M.-H.1    Denœux, T.2
  • 27
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J.P. Mesirov, and T.R. Golub Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data Machine Learning 52 2003 91 118
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.P.3    Golub, T.R.4
  • 28
    • 0141465207 scopus 로고    scopus 로고
    • The presence of lattice theory in discrete problems of mathematical social sciences. Why
    • B. Montjardet The presence of lattice theory in discrete problems of mathematical social sciences. Why Mathematical Social Sciences 46 2003 103 144
    • (2003) Mathematical Social Sciences , vol.46 , pp. 103-144
    • Montjardet, B.1
  • 30
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand Objective criteria for the evaluation of clustering methods Journal of the American Statistical Association 66 1971 846 850
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.1
  • 31
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis Journal of Computational and Applied Mathematics 20 1987 53 65
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 34
    • 0003106837 scopus 로고
    • Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem
    • P. Smets Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem International Journal of Approximate Reasoning 9 1993 1 35
    • (1993) International Journal of Approximate Reasoning , vol.9 , pp. 1-35
    • Smets, P.1
  • 36
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensemble - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensemble - a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research 3 2002 563 618
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 563-618
    • Strehl, A.1    Ghosh, J.2
  • 39
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • Williamstown, USA
    • K. Wagstaff, C. Cardie, S. Rogers, S. Schrdl, Constrained k-means clustering with background knowledge, in: Proceedings ICML 2001, Williamstown, USA, 2001, pp. 577-584.
    • (2001) Proceedings ICML 2001 , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrdl, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.