메뉴 건너뛰기




Volumn 70, Issue 1-3, 2006, Pages 79-92

Detecting novelties in time series through neural networks forecasting with robust confidence intervals

Author keywords

Anomaly detection; Confidence intervals; Forecasting; Fraud detection; Neural network; Novelty detection; Time series

Indexed keywords

COMPUTER SYSTEM RECOVERY; FINANCIAL DATA PROCESSING; FORECASTING; TIME SERIES ANALYSIS;

EID: 33750987935     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.05.008     Document Type: Article
Times cited : (38)

References (39)
  • 1
    • 22944456186 scopus 로고    scopus 로고
    • A. Al-Habaibeh, F. Zorriassatine, R.M. Parkin, M.R. Jackson, Application of infrared technology for quality control of diesel engine glow plugs, J. Eng. Manufacture 219 (6) (2005) 483-490, Proceedings of the Institute of Mechanical Engineers, Part B.
  • 2
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 51 (2003) 321-339
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 3
    • 0041339696 scopus 로고    scopus 로고
    • Modified support vector novelty detector using training data with outliers
    • Cao L.J., Lee H.P., and Chong W.K. Modified support vector novelty detector using training data with outliers. Pattern Recognition Lett. 24 14 (2003) 2479-2487
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.14 , pp. 2479-2487
    • Cao, L.J.1    Lee, H.P.2    Chong, W.K.3
  • 5
    • 33750996578 scopus 로고    scopus 로고
    • D. Dasgupta, S. Forrest, Novelty detection in time series data using ideas from immunology, in: Proceedings of the Fifth International Conference on Intelligent Systems, 1996.
  • 6
    • 33751010351 scopus 로고    scopus 로고
    • F. Gonzalez, D. Dasgupta, Neuro-immune and self-organizing map approaches to anomaly detection: a comparison, in: Proceedings of the First International Conference on Artificial Immune Systems, 2002, pp. 203-211.
  • 7
    • 84901440662 scopus 로고    scopus 로고
    • F. Gonzalez, D. Dasgupta, R. Kozma, Combining negative selection and classification techniques for anomaly detection, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002, pp. 705-710.
  • 9
    • 34548547034 scopus 로고    scopus 로고
    • E. Keogh, J. Lin, A. Fu, HOT SAX: efficiently finding the most unusual time series subsequence, in: Proceedings of Fifth IEEE International Conference on Data Mining (ICDM'05), 2005, pp. 226-233, longer version of the paper and datasets available at 〈http://www.cs.ucr.edu/~eamonn/discords〉.
  • 10
    • 0141463039 scopus 로고    scopus 로고
    • E. Keogh, S. Lonardi, W. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the ACM Knowledge Discovery and Data Mining-SIGKDD'02, 2002, pp. 550-556.
  • 11
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K.-J. Financial time series forecasting using support vector machines. Neurocomputing 55 (2003) 307-319
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.-J.1
  • 12
    • 33751007433 scopus 로고    scopus 로고
    • T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski, Time series prediction with multi-layer perceptron, FIR and Elman neural networks, in: Proceedings of the World Congress on Neural Networks, San Diego, USA, 1996, pp. 491-496.
  • 13
    • 23044519768 scopus 로고    scopus 로고
    • Artificial neural network models for predicting patterns in auditing monthly balances
    • Koskivaara E. Artificial neural network models for predicting patterns in auditing monthly balances. J. Oper. Res. Soc. 51 9 (2000) 1060-1069
    • (2000) J. Oper. Res. Soc. , vol.51 , Issue.9 , pp. 1060-1069
    • Koskivaara, E.1
  • 14
    • 33751003134 scopus 로고    scopus 로고
    • E. Koskivaara, Artificial neural networks in auditing: state of the art, Technical Report, TUCS-TR-509, ISBN 952-12-1120-2, (February 2003).
  • 15
    • 0141682928 scopus 로고    scopus 로고
    • J. Ma, S. Perkins, Time series novelty detection using one-class support vector machines, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN'2003), vol. 3, 2003, pp. 1741-1745.
  • 16
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review, part i: statistical approaches
    • Markou M., and Singh S. Novelty detection: a review, part i: statistical approaches. Signal Process. 83 (2003) 2481-2497
    • (2003) Signal Process. , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 17
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review, part ii: neural network based approaches
    • Markou M., and Singh S. Novelty detection: a review, part ii: neural network based approaches. Signal Process. 83 (2003) 2499-2521
    • (2003) Signal Process. , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 18
    • 8844281752 scopus 로고    scopus 로고
    • Novelty detection in learning systems
    • Marsland S. Novelty detection in learning systems. Neural Comput. Surv. 3 (2003) 157-195
    • (2003) Neural Comput. Surv. , vol.3 , pp. 157-195
    • Marsland, S.1
  • 19
    • 16644365029 scopus 로고    scopus 로고
    • On-line novelty detection for autonomous mobile robots
    • Marsland S., Nehmzow U., and Shapiro J. On-line novelty detection for autonomous mobile robots. Robotics Autonomous Syst. 51 (2005) 191-206
    • (2005) Robotics Autonomous Syst. , vol.51 , pp. 191-206
    • Marsland, S.1    Nehmzow, U.2    Shapiro, J.3
  • 21
    • 33751013159 scopus 로고    scopus 로고
    • A.L.I. Oliveira, G. Azevedo, A. Barros, A.L.M. Santos, A neural network based system for payroll audit support (in Portuguese), in: Proceeding of the IV Brazilian National Artificial Intelligence Meeting, 2003, pp. 487-496.
  • 22
    • 33751002517 scopus 로고    scopus 로고
    • A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Novelty detection for short time series with neural networks, in: A. Abraham, M. Köppen, K. Franke (Eds.), Design and Application of Hybrid Intelligent Systems, Frontiers in Artificial Intelligence and Applications, vol. 104, IOS Press, 2003, pp. 66-76.
  • 23
    • 10844281877 scopus 로고    scopus 로고
    • A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Improving novelty detection in short time series through RBF-DDA parameter adjustment, in: Proceedings of International Joint Conference on Neural Networks (IJCNN'2004), vol. 3, IEEE Press, Budapest, Hungary, 2004, pp. 2123-2128.
  • 24
    • 10044225835 scopus 로고    scopus 로고
    • A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, A method based on RBF-DDA neural networks for improving novelty detection in time series, in: Proceedings of the International FLAIRS Conference, AAAI Press, New York, 2004, pp. 670-675.
  • 25
    • 9444297304 scopus 로고    scopus 로고
    • A.L.I. Oliveira, F.B.L. Neto, S.R.L. Meira, Combining MLP and RBF neural networks for novelty detection in short time series, in: Proceedings of Mexican International Conference on Artificial Intelligence, Lecture Notes in Computer Science, vol. 2972, Springer, Berlin Heidelberg, 2004, pp. 844-853.
  • 26
    • 33751015619 scopus 로고    scopus 로고
    • L. Prechelt, Proben1-a set of neural networks benchmark problems and benchmarking rules, Technical Report 21/94, Universität Karlsruhe, Germany, 1994.
  • 27
    • 84943274699 scopus 로고    scopus 로고
    • M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: Proceedings of the IEEE International Conference on Neural Networks (ICNN 93), vol. 1, 1993, pp. 586-591.
  • 28
    • 84898944587 scopus 로고    scopus 로고
    • J. Ryan, M.J. Lin, R. Miikkulainen, Intrusion detection with neural networks, in: M.J. et al. (Ed.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 1998, pp. 943-949.
  • 29
    • 84898941932 scopus 로고    scopus 로고
    • B. Scholkopf, R.C. Williamson, A.J. Smola, J. Shawe-Tayler, J. Platt, Support vector method for novelty detection, Neural Inform. Process. Syst. (2000) 582-588.
  • 30
    • 53949108553 scopus 로고    scopus 로고
    • C. Shahabi, X. Tian, W. Zhao, TSA-tree: a wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data, in: Proceedings of 12th International Conference on Scientific and Statistical Database Management, 2000, pp. 55-68.
  • 32
    • 2142828547 scopus 로고    scopus 로고
    • An approach to novelty detection applied to the classification of image regions
    • Singh S., and Markou M. An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. 16 4 (2004) 396-406
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.4 , pp. 396-406
    • Singh, S.1    Markou, M.2
  • 33
    • 33750970458 scopus 로고    scopus 로고
    • D.M.J. Tax, One-class classification-concept-learning in the absence of counter-examples, Ph.D. Thesis, Technische Universiteit Delft, 2001.
  • 34
    • 33750985251 scopus 로고    scopus 로고
    • Time series library 〈http://www-personal.buseco.monash.edu.au/~hyndman/TSDL〉.
  • 35
    • 33750978575 scopus 로고    scopus 로고
    • U.S. census bureau 〈http://www.census.gov/mrts/www/mrts.html〉.
  • 36
    • 33750968950 scopus 로고    scopus 로고
    • G.C. Vasconcelos, An investigation of feedforward neural networks with respect to the detection of spurious patterns, Ph.D. Thesis, University of Kent, Canterbury, 1995.
  • 37
    • 0029244585 scopus 로고
    • Investigating feedforward neural networks with respect to the rejection of spurious patterns
    • Vasconcelos G.C., Fairhurst M.C., and Bisset D.L. Investigating feedforward neural networks with respect to the rejection of spurious patterns. Pattern Recognition Lett. 16 2 (1995) 207-212
    • (1995) Pattern Recognition Lett. , vol.16 , Issue.2 , pp. 207-212
    • Vasconcelos, G.C.1    Fairhurst, M.C.2    Bisset, D.L.3
  • 38
    • 0034283989 scopus 로고    scopus 로고
    • A case study on using neural networks to perform technical forecasting of forex
    • Yao J., and Tan C.L. A case study on using neural networks to perform technical forecasting of forex. Neurocomputing 34 (2000) 79-98
    • (2000) Neurocomputing , vol.34 , pp. 79-98
    • Yao, J.1    Tan, C.L.2
  • 39
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B.E., and Hu M.Y. Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting 14 (1998) 35-62
    • (1998) Int. J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.