-
1
-
-
0001980141
-
The evolution of strategies in the iterated Prisoner's dilemma
-
Morgan Kaufman Publishers, Inc., Los Altos, California
-
R. Axelrod, The Evolution of Strategies in the Iterated Prisoner's Dilemma, in: Genetic Algorithms and Simulated Annealing, 32-41, Morgan Kaufman Publishers, Inc., Los Altos, California, 1987.
-
(1987)
Genetic Algorithms and Simulated Annealing
, pp. 32-41
-
-
Axelrod, R.1
-
3
-
-
0001013260
-
Discrepancy of sequences associated with a number system (in dimension s)
-
French
-
H. Faure, Discrepancy of Sequences Associated with a Number System (in dimension s), Acta. Arith, 41(4) (1982 [French]), 337-351.
-
(1982)
Acta. Arith
, vol.41
, Issue.4
, pp. 337-351
-
-
Faure, H.1
-
4
-
-
62549155313
-
Finding optimal volume subintervals with κ points and calculating the star discrepancy are NP-hard problems
-
M. Gnewuch, A. Srivastav, C. Winzen, Finding Optimal Volume Subintervals with κ Points and Calculating the Star Discrepancy are NP-hard Problems, Journal of Complexity, 25 (2009), 115-127.
-
(2009)
Journal of Complexity
, vol.25
, pp. 115-127
-
-
Gnewuch, M.1
Srivastav, A.2
Winzen, C.3
-
5
-
-
0002020770
-
On the efficiency of evaluating certain quasirandom sequences of points in evaluating multidimensional integrals
-
J. Halton, On the Efficiency of Evaluating Certain Quasirandom Sequences of Points in Evaluating Multidimensional Integrals, Numerische Mathematik, 2 (1960), 84-90.
-
(1960)
Numerische Mathematik
, vol.2
, pp. 84-90
-
-
Halton, J.1
-
6
-
-
0001297776
-
Lattice rules: How well do they measure up?
-
Springer-Verlag, New York
-
F. Hickernell, Lattice Rules: How Well Do They Measure Up? in: Lecture Notes in Statistics 138, 109-163, Springer-Verlag, New York, 1998.
-
(1998)
Lecture Notes in Statistics
, vol.138
, pp. 109-163
-
-
Hickernell, F.1
-
8
-
-
0000382131
-
2-discrepancy for anchored boxes
-
2-Discrepancy for Anchored Boxes, Journal of Complexity, 14 (1998), 527-556.
-
(1998)
Journal of Complexity
, vol.14
, pp. 527-556
-
-
Matoušek, J.1
-
9
-
-
18144420774
-
A note on E. Thiémard's algorithm to compute bounds for the star discrepancy
-
DOI 10.1016/j.jco.2004.05.004, PII S0885064X04000421
-
T. Pillards, R. Cools, A Note on E. Thiémard's Algorithm to Compute Bounds for the Star Discrepancy, Journal of Complexity, 21 (2005), 320-323. (Pubitemid 40608772)
-
(2005)
Journal of Complexity
, vol.21
, Issue.3
, pp. 320-323
-
-
Pillards, T.1
Cools, R.2
-
10
-
-
21344432074
-
Genetic algorithms and the travelling salesman problem
-
J. Potvin, Genetic Algorithms and the Travelling Salesman Problem, Annals of Operations Research, 63(3) (1996), 337-370.
-
(1996)
Annals of Operations Research
, vol.63
, Issue.3
, pp. 337-370
-
-
Potvin, J.1
-
13
-
-
0035700785
-
An algorithm to compute bounds for the star discrepancy
-
E. Thiémard, An Algorithm to Compute Bounds for the Star Discrepancy, Journal of Complexity, 17 (2001), 850-880.
-
(2001)
Journal of Complexity
, vol.17
, pp. 850-880
-
-
Thiémard, E.1
-
14
-
-
31544459496
-
2-discrepancy
-
DOI 10.1016/j.cam.2005.05.022, PII S0377042705003717, Proceedings of the 11th International Congress on Computational and Applied Mathematics
-
2-discrepancy, Journal of Computational and Applied Mathematics, 189 (2006), 341-361. (Pubitemid 43165721)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.189
, Issue.1-2
, pp. 341-361
-
-
Vandewoestyne, B.1
Cools, R.2
-
16
-
-
0002239882
-
Computational investigations of low-discrepancy point sets
-
Academic Press, New York
-
T. T. Warnock, Computational Investigations of Low-discrepancy Point Sets, in: Applications of Number Theory to Numerical Analysis (Proceedings of the Symposium, University of Montreal, Quebec), 319-343, Academic Press, New York, 1972.
-
(1972)
Applications of Number Theory to Numerical Analysis (Proceedings of the Symposium, University of Montreal, Quebec)
, pp. 319-343
-
-
Warnock, T.T.1
-
17
-
-
0000045173
-
Application of threshold-accepting to the evaluation of the discrepancy of a set of points
-
P. Winker, K. Fang, Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points, SIAM J. Numer. Anal. 34(4) (1997), 2028-2042. (Pubitemid 127463582)
-
(1997)
SIAM Journal on Numerical Analysis
, vol.34
, Issue.5
, pp. 2028-2042
-
-
Winker, P.1
Fang, K.-T.2
-
18
-
-
40749150012
-
Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy
-
DOI 10.1016/j.jco.2007.08.003, PII S0885064X07000921
-
M. Gnewuch, Bracketing Numbers for Axis-parallel Boxes and Applications to Geometric Discrepancy, Journal of Complexity, 24 (2008), 154-172. (Pubitemid 351382119)
-
(2008)
Journal of Complexity
, vol.24
, Issue.2
, pp. 154-172
-
-
Gnewuch, M.1
-
19
-
-
84755161857
-
Algorithmic construction of low-discrepancy point sets via dependent randomized rounding
-
doi:10.1016/j.jco.2010.03.004
-
B. Doerr et al., Algorithmic Construction of Low-discrepancy Point Sets Via Dependent Randomized Rounding, Journal of Complexity, (2010) doi:10.1016/j.jco.2010.03.004.
-
(2010)
Journal of Complexity
-
-
Doerr, B.1
|