-
2
-
-
40749158774
-
-
B. Doerr, M. Gnewuch, Construction of low-discrepancy point sets of small size by bracketing covers and dependent randomized rounding, Berichtsreihe des Mathematischen Seminars der Universität Kiel, Report 06-14, 2006 (to appear in the proceedings of Monte Carlo and quasi-Monte Carlo Methods 2006).
-
B. Doerr, M. Gnewuch, Construction of low-discrepancy point sets of small size by bracketing covers and dependent randomized rounding, Berichtsreihe des Mathematischen Seminars der Universität Kiel, Report 06-14, 2006 (to appear in the proceedings of Monte Carlo and quasi-Monte Carlo Methods 2006).
-
-
-
-
3
-
-
27144490719
-
Bounds and constructions for the star-discrepancy via δ-covers
-
Doerr B., Gnewuch M., and Srivastav A. Bounds and constructions for the star-discrepancy via δ-covers. J. Complexity 21 (2005) 691-709
-
(2005)
J. Complexity
, vol.21
, pp. 691-709
-
-
Doerr, B.1
Gnewuch, M.2
Srivastav, A.3
-
4
-
-
0003413875
-
-
Springer, Berlin
-
Drmota M., and Tichy R.F. Sequences, Discrepancies and Applications, Lecture Notes in Mathematics vol. 1651 (1997), Springer, Berlin
-
(1997)
Sequences, Discrepancies and Applications, Lecture Notes in Mathematics
, vol.1651
-
-
Drmota, M.1
Tichy, R.F.2
-
5
-
-
40749162403
-
-
∞-extreme discrepancy, Electron. J. Combin. 12 (2005), Research Paper 54.
-
∞-extreme discrepancy, Electron. J. Combin. 12 (2005), Research Paper 54.
-
-
-
-
6
-
-
27144500417
-
Geometric discrepancies and δ-covers
-
Gnewuch M., and Doerr B. Geometric discrepancies and δ-covers. Oberwolfach Rep. 1 (2004) 687-690
-
(2004)
Oberwolfach Rep.
, vol.1
, pp. 687-690
-
-
Gnewuch, M.1
Doerr, B.2
-
7
-
-
0000996139
-
Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension
-
Haussler D. Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory A 69 (1995) 217-232
-
(1995)
J. Combin. Theory A
, vol.69
, pp. 217-232
-
-
Haussler, D.1
-
8
-
-
0035649406
-
The inverse of the star-discrepancy depends linearly on the dimension
-
Heinrich S., Novak E., Wasilkowski G.W., and Woźniakowski H. The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96 (2001) 279-302
-
(2001)
Acta Arith.
, vol.96
, pp. 279-302
-
-
Heinrich, S.1
Novak, E.2
Wasilkowski, G.W.3
Woźniakowski, H.4
-
11
-
-
3242701678
-
On the tractability of multivariate integration and approximation by neural networks
-
Mhaskar H.N. On the tractability of multivariate integration and approximation by neural networks. J. Complexity 20 (2004) 561-590
-
(2004)
J. Complexity
, vol.20
, pp. 561-590
-
-
Mhaskar, H.N.1
-
13
-
-
0001142376
-
When are integration and discrepancy tractable?
-
DeVore R.A., Iserles A., and Süli E. (Eds), Cambridge University Press, Cambridge
-
Novak E., and Woźniakowski H. When are integration and discrepancy tractable?. In: DeVore R.A., Iserles A., and Süli E. (Eds). Foundations of Computational Mathematics (2001), Cambridge University Press, Cambridge 211-266
-
(2001)
Foundations of Computational Mathematics
, pp. 211-266
-
-
Novak, E.1
Woźniakowski, H.2
-
14
-
-
0001957366
-
Sharper bounds for Gaussian and empirical processes
-
Talagrand M. Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994) 28-76
-
(1994)
Ann. Probab.
, vol.22
, pp. 28-76
-
-
Talagrand, M.1
-
15
-
-
0035700785
-
An algorithm to compute bounds for the star discrepancy
-
Thiémard E. An algorithm to compute bounds for the star discrepancy. J. Complexity 17 (2001) 850-880
-
(2001)
J. Complexity
, vol.17
, pp. 850-880
-
-
Thiémard, E.1
|