-
2
-
-
84855590895
-
A non-linear lower bound for planar epsilon-nets
-
doi:10.1007/s00454-010-9323-7 in press
-
N. Alon, A non-linear lower bound for planar epsilon-nets, Discrete and Computational Geometry 2011 (in press) doi:10.1007/s00454-010-9323-7.
-
(2011)
Discrete and Computational Geometry
-
-
Alon, N.1
-
3
-
-
55249118861
-
On approximating the depth and related problems
-
B. Aronov, and S. Har-Peled On approximating the depth and related problems SIAM J. Comput. 38 3 2008 899 921
-
(2008)
SIAM J. Comput.
, vol.38
, Issue.3
, pp. 899-921
-
-
Aronov, B.1
Har-Peled, S.2
-
4
-
-
84858283459
-
The bichromatic rectangle problem in high dimensions
-
Vancouver, BC, Canada
-
J. Backer, J.M. Keil, The bichromatic rectangle problem in high dimensions, in: Proc. of the 21st Annual Canadian Conference on Computational Geometry, Vancouver, BC, Canada, pp. 157160, 2009.
-
(2009)
Proc. of the 21st Annual Canadian Conference on Computational Geometry
, pp. 157160
-
-
Backer, J.1
Keil, J.M.2
-
5
-
-
84858288777
-
The mono- and bichromatic empty rectangle and square problems in all dimensions
-
LNCS
-
J. Backer, J.M. Keil, The mono- and bichromatic empty rectangle and square problems in all dimensions, in: Proc. of the 9th Latin American Theoretical Informatics Symposium, vol. 6034, LNCS, pp. 1425, 2010.
-
(2010)
Proc. of the 9th Latin American Theoretical Informatics Symposium
, vol.6034
, pp. 1425
-
-
Backer, J.1
Keil, J.M.2
-
6
-
-
80053468956
-
Geometric clustering: Fixed-parameter tractability and lower bounds with respect to the dimension
-
S. Cabello, P. Giannopoulos, C. Knauer, D. Marx, and G. Rote Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension ACM Transactions on Algorithms 7 4 2011 43:1 43:27
-
(2011)
ACM Transactions on Algorithms
, vol.7
, Issue.4
, pp. 431-4327
-
-
Cabello, S.1
Giannopoulos, P.2
Knauer, C.3
Marx, D.4
Rote, G.5
-
7
-
-
57349128630
-
Geometric clustering: Fixed-parameter tractability and lower bounds with respect to the dimension
-
S. Cabello, P. Giannopoulos, C. Knauer, G. Rote, Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension, in: Proc. 19th Ann. ACM-SIAM Symposium on Discrete Algorithms, pp. 836843, 2008.
-
(2008)
Proc. 19th Ann. ACM-SIAM Symposium on Discrete Algorithms
, pp. 836843
-
-
Cabello, S.1
Giannopoulos, P.2
Knauer, C.3
Rote, G.4
-
8
-
-
0000177976
-
On the efficiency of polynomial time approximation schemes
-
PII S0020019097001646
-
M. Cesati, and L. Trevisan On the efficiency of polynomial time approximation schemes Inf. Process. Lett. 64 4 1997 165 171 (Pubitemid 127397642)
-
(1997)
Information Processing Letters
, vol.64
, Issue.4
, pp. 165-171
-
-
Cesati, M.1
Trevisan, L.2
-
10
-
-
24144439137
-
Tight lower bounds for certain parameterized NP-hard problems
-
DOI 10.1016/j.ic.2005.05.001, PII S0890540105000763
-
J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I.A. Kanj, and G. Xia Tight lower bounds for certain parameterized NP-hard problems Inf. Comput. 201 2005 216 231 (Pubitemid 41240616)
-
(2005)
Information and Computation
, vol.201
, Issue.2
, pp. 216-231
-
-
Chen, J.1
Chor, B.2
Fellows, M.3
Huang, X.4
Juedes, D.5
Kanj, I.A.6
Xia, G.7
-
11
-
-
0030264248
-
Computing the discrepancy with applications to supersampling patterns
-
D.P. Dobkin, D. Eppstein, and D.P. Mitchell Computing the discrepancy with applications to supersampling patterns ACM Trans. Graph. 15 4 1996 354 376 (Pubitemid 126418650)
-
(1996)
ACM Transactions on Graphics
, vol.15
, Issue.4
, pp. 354-376
-
-
Dobkin, D.P.1
Eppstein, D.2
Mitchell, D.P.3
-
12
-
-
84755161857
-
Algorithmic construction of low-discrepancy point sets via dependent randomized rounding
-
B. Doerr, M. Gnewuch, and M. Wahlstrm Algorithmic construction of low-discrepancy point sets via dependent randomized rounding J. Complexity 26 5 2010 490 507
-
(2010)
J. Complexity
, vol.26
, Issue.5
, pp. 490-507
-
-
Doerr, B.1
Gnewuch, M.2
Wahlstrm, M.3
-
16
-
-
0036891189
-
The maximum box problem and its application to data analysis
-
DOI 10.1023/A:1020546910706
-
J. Eckstein, P.L. Hammer, Y. Liu, M. Nediak, and B. Simeone The maximum box problem and its application to data analysis Comput. Optim. Appl. 23 3 2002 285 298 (Pubitemid 35381600)
-
(2002)
Computational Optimization and Applications
, vol.23
, Issue.3
, pp. 285-298
-
-
Eckstein, J.1
Hammer, P.L.2
Liu, Y.3
Nediak, M.4
Simeone, B.5
-
18
-
-
40749150012
-
Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy
-
DOI 10.1016/j.jco.2007.08.003, PII S0885064X07000921
-
M. Gnewuch Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy J. Complexity 24 2 2008 154 172 (Pubitemid 351382119)
-
(2008)
Journal of Complexity
, vol.24
, Issue.2
, pp. 154-172
-
-
Gnewuch, M.1
-
19
-
-
62549155313
-
Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems
-
M. Gnewuch, A. Srivastav, and C. Winzen Finding optimal volume subintervals with k points and calculating the star discrepancy are NP-hard problems J. Complexity 25 2009 115 127
-
(2009)
J. Complexity
, vol.25
, pp. 115-127
-
-
Gnewuch, M.1
Srivastav, A.2
Winzen, C.3
-
20
-
-
84969326930
-
Epsilon-nets and simplex range queries
-
D. Haussler, E. Welzl, Epsilon-nets and simplex range queries, in: Proc. of the 2nd Annual Symposium on Computational Geometry, ACM, pp. 6171, 1986.
-
(1986)
Proc. of the 2nd Annual Symposium on Computational Geometry, ACM
, pp. 6171
-
-
Haussler, D.1
Welzl, E.2
-
24
-
-
84858286681
-
Tight lower bounds for the size of Epsilon-nets
-
J. Pach, G. Tardos, Tight lower bounds for the size of Epsilon-nets, in: Proc. of the 27th Annual ACM Symposium on Computational Geometry, ACM, pp. 458463, 2011.
-
(2011)
Proc. of the 27th Annual ACM Symposium on Computational Geometry, ACM
, pp. 458463
-
-
Pach, J.1
Tardos, G.2
-
26
-
-
0035700785
-
An algorithm to compute bounds for the star discrepancy
-
E. Thimard An algorithm to compute bounds for the star discrepancy J. Complexity 17 4 2001 850 880
-
(2001)
J. Complexity
, vol.17
, Issue.4
, pp. 850-880
-
-
Thimard, E.1
-
27
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V.N. Vapnik, and A.Y. Chervonenkis On the uniform convergence of relative frequencies of events to their probabilities Theory of Probability and its Applications 16 2 1971 264 280
-
(1971)
Theory of Probability and Its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
|