-
1
-
-
77957713078
-
Assessing solution quality in stochastic programs via sampling
-
edited by M. R. Oskoorouchi, INFORMS
-
Bayraksan, G., and D. P. Morton. 2009. "Assessing solution quality in stochastic programs via sampling". In Tutorials in Operations Research, edited by M. R. Oskoorouchi, 102-122. INFORMS.
-
(2009)
Tutorials in Operations Research
, pp. 102-122
-
-
Bayraksan, G.1
Morton, D.P.2
-
2
-
-
80053262880
-
A Sequential Sampling Procedure for Stochastic Programming
-
To appear in
-
Bayraksan, G., and D. P. Morton. 2011. "A Sequential Sampling Procedure for Stochastic Programming". To appear in Operations Research.
-
(2011)
Operations Research
-
-
Bayraksan, G.1
Morton, D.P.2
-
3
-
-
0342458735
-
Bounding separable recourse functions with limited distribution information
-
Birge, J. R., and J. H. Dulá. 1991. "Bounding separable recourse functions with limited distribution information". Annals of Operations Research 30:277-298.
-
(1991)
Annals of Operations Research
, vol.30
, pp. 277-298
-
-
Birge, J.R.1
Dulá, J.H.2
-
4
-
-
0002106859
-
Upper Bounds on the Expected Value of a Convex Function using Gradient and Conjugate Function Information
-
Birge, J. R., and M. Teboulle. 1989. "Upper Bounds on the Expected Value of a Convex Function using Gradient and Conjugate Function Information". Mathematics of Operations Research 14:745-759.
-
(1989)
Mathematics of Operations Research
, vol.14
, pp. 745-759
-
-
Birge, J.R.1
Teboulle, M.2
-
5
-
-
0022698417
-
DESIGNING APPROXIMATION SCHEMES FOR STOCHASTIC OPTIMIZATION PROBLEMS, IN PARTICULAR FOR STOCHASTIC PROGRAMS WITH RECOURSE.
-
Birge, J. R., and R. Wets. 1986. "Designing approximation schemes for stochastic optimization problems, in particular, for stochastic programs with recourse". Mathematical Programming Study 27:54-102. (Pubitemid 16534519)
-
(1986)
Mathematical Programming Study
, pp. 54-102
-
-
Birge, J.R.1
Wets, R.J.-B.2
-
6
-
-
4043083200
-
Sublinear upper bounds for stochastic programs with recourse
-
Birge, J. R., and R. Wets. 1989. "Sublinear upper bounds for stochastic programs with recourse". Mathematical Programming 43:131-149.
-
(1989)
Mathematical Programming
, vol.43
, pp. 131-149
-
-
Birge, J.R.1
Wets, R.2
-
7
-
-
22544483760
-
Second-order lower bounds on the expectation of a convex function
-
DOI 10.1287/moor.1040.0136
-
Dokov, S. P., and D. P. Morton. 2005. "Second-order lower bounds on the expectation of a convex function". Mathematics of Operations Research 30:662-677. (Pubitemid 43134196)
-
(2005)
Mathematics of Operations Research
, vol.30
, Issue.3
, pp. 662-677
-
-
Dokov, S.P.1
Morton, D.P.2
-
8
-
-
0012230924
-
Tight bounds for stochastic convex programs
-
Edirisinghe, N. C. P., and W. T. Ziemba. 1992. "Tight bounds for stochastic convex programs". Operations Research 40:660-677.
-
(1992)
Operations Research
, vol.40
, pp. 660-677
-
-
Edirisinghe, N.C.P.1
Ziemba, W.T.2
-
9
-
-
0012335588
-
Bounds on the expectation of a convex function of a random variable
-
Technical report, Santa Monica, California
-
Edmundson, H. P. 1957. "Bounds on the expectation of a convex function of a random variable". Technical report, The Rand Corporation Paper 982, Santa Monica, California.
-
(1957)
The Rand Corporation Paper
, vol.982
-
-
Edmundson, H.P.1
-
10
-
-
0022544809
-
CONVEXITY AND CONCAVITY PROPERTIES OF THE OPTIMAL VALUE FUNCTION IN PARAMETRIC NONLINEAR PROGRAMMING.
-
Fiacco, A. V., and J. Kyparisis. 1986. "Convexity and Concavity Properties of Optimal Value Function in Parametric Nonlinear Programming". Journal of Optimization Theory and Applications 48:95-126. (Pubitemid 16478877)
-
(1986)
Journal of Optimization Theory and Applications
, vol.48
, Issue.1
, pp. 95-126
-
-
Fiacco, A.V.1
Kyparisis, J.2
-
12
-
-
0023844906
-
SOLUTION METHOD FOR SLP RECOURSE PROBLEMS WITH ARBITRARY MULTIVARIATE DISTRIBUTIONS- THE INDEPENDENT CASE.
-
Frauendorfer, K., and P. Kall. 1988. "ASolution Method for SLP Recourse Problems with Arbitrary Multivariate Distributions - The Independent Case". Problems of Control and Information Theory 17:177-205. (Pubitemid 18655354)
-
(1988)
Problems of control and information theory
, vol.17
, Issue.4
, pp. 177-205
-
-
Frauendorfer, K.1
Kall, P.2
-
13
-
-
0343327401
-
The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations
-
Glynn, P. W., and W. Whitt. 1992. "The Asymptotic Validity of Sequential Stopping Rules for Stochastic Simulations". The Annals of Applied Probability 2 (1): 180-198.
-
(1992)
The Annals of Applied Probability
, vol.2
, Issue.1
, pp. 180-198
-
-
Glynn, P.W.1
Whitt, W.2
-
14
-
-
36849072045
-
Graph implementations for nonsmooth convex programs
-
Recent Advances in Learning and Control, edited by V. Blondel, S. Boyd, and H. Kimura, Springer-Verlag Limited. Accessed 17 October 2011
-
Grant, M., and S. Boyd. 2008. "Graph implementations for nonsmooth convex programs". In Recent Advances in Learning and Control, edited by V. Blondel, S. Boyd, and H. Kimura, Lecture Notes in Control and Information Sciences, 95-110. Springer-Verlag Limited. http://stanford.edu/~boyd/graph dcp.html. Accessed 17 October 2011.
-
(2008)
Lecture Notes in Control and Information Sciences
, pp. 95-110
-
-
Grant, M.1
Boyd, S.2
-
16
-
-
0017468990
-
Bounds on the expectation of a convex function of a random variable: With applications to stochastic programming
-
Huang, C. C., W. T. Ziemba, and A. Ben-Tal. 1977. "Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming". Operations Research 25:315-325.
-
(1977)
Operations Research
, vol.25
, pp. 315-325
-
-
Huang, C.C.1
Ziemba, W.T.2
Ben-Tal, A.3
-
17
-
-
9944226444
-
An upper bound for SLP using first and total second moments
-
Kall, P. 1991. "An upper bound for SLP using first and total second moments". Annals of Operations Research 30:267-276.
-
(1991)
Annals of Operations Research
, vol.30
, pp. 267-276
-
-
Kall, P.1
-
18
-
-
0008703334
-
Approximation techniques in stochastic programming"
-
edited by Y. Ermoliev and R. Wets, Springer-Verlag, Berlin
-
Kall, P., A. Ruszczyński, and K. Frauendorfer. 1988. "Approximation techniques in stochastic programming". In Numerical Techniques for Stochastic Optimization, edited by Y. Ermoliev and R. Wets, 33-64. Springer-Verlag, Berlin.
-
(1988)
Numerical Techniques for Stochastic Optimization
, pp. 33-64
-
-
Kall, P.1
Ruszczyński, A.2
Frauendorfer, K.3
-
19
-
-
0019539240
-
PERSPECTIVE ON THE USE OF CONTROL VARIABLES TO INCREASE THE EFFICIENCY OF MONTE CARLO SIMULATIONS.
-
Lavenberg, S. S., and P. D. Welch. 1981. "A perspective on the use of control variates to increase the efficiency of Monte Carlo simulations". Management Science 27:322-335. (Pubitemid 11414425)
-
(1981)
Management Science
, vol.27
, Issue.3
, pp. 322-335
-
-
Lavenberg, S.S.1
Welch, P.D.2
-
20
-
-
0012335591
-
Bounds on the expectation of a convex function of a multivariate random variable
-
Madansky, A. 1959. "Bounds on the expectation of a convex function of a multivariate random variable". Annals of Mathematical Statistics 30:743-746.
-
(1959)
Annals of Mathematical Statistics
, vol.30
, pp. 743-746
-
-
Madansky, A.1
-
21
-
-
0000000764
-
Inequalities for stochastic linear programming problems
-
Madansky, A. 1960. "Inequalities for stochastic linear programming problems". Management Science 6:197-204.
-
(1960)
Management Science
, vol.6
, pp. 197-204
-
-
Madansky, A.1
-
22
-
-
0033315611
-
Restricted-recourse bounds for stochastic linear programming
-
Morton, D. P., and R. K. Wood. 1999. "Restricted-recourse bounds for stochastic linear programming". Operations Research 47:943-956. (Pubitemid 30594268)
-
(1999)
Operations Research
, vol.47
, Issue.6
, pp. 943-956
-
-
Morton, D.P.1
Wood, R.K.2
-
23
-
-
0001137796
-
Control Variate Remedies
-
Nelson, B. L. 1990. "Control Variate Remedies". Operations Research 38:359-375.
-
(1990)
Operations Research
, vol.38
, pp. 359-375
-
-
Nelson, B.L.1
-
24
-
-
46149111479
-
Jackknife estimators for reducing bias in asset allocation
-
edited by L. Perrone, F. Wieland, J. Liu, B. Lawson, D. Nicol, and R. Fujimoto, Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
-
Partani, A., D. Morton, and I. Popova. 2006. "Jackknife estimators for reducing bias in asset allocation". In Proceedings of the 2006 Winter Simulation Conference, edited by L. Perrone, F. Wieland, J. Liu, B. Lawson, D. Nicol, and R. Fujimoto, 783-791. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
-
(2006)
Proceedings of the 2006 Winter Simulation Conference
, pp. 783-791
-
-
Partani, A.1
Morton, D.2
Popova, I.3
-
25
-
-
67349284803
-
A Tighter Variant of Jensen's Lower Bound for Stochastic Programs and Separable Approximations to Recourse Functions
-
Topaloglu, H. 2009. "A Tighter Variant of Jensen's Lower Bound for Stochastic Programs and Separable Approximations to Recourse Functions". European Journal of Operations Research 199:315-322.
-
(2009)
European Journal of Operations Research
, vol.199
, pp. 315-322
-
-
Topaloglu, H.1
|