메뉴 건너뛰기




Volumn 69, Issue 1, 2012, Pages 79-89

Combination of artificial neural network models for air quality predictions for the region of Annaba, Algeria

Author keywords

Air quality prediction; Artificial neural network

Indexed keywords

AIR POLLUTANT CONCENTRATIONS; AIR POLLUTANTS; AIR QUALITY PREDICTION; ALGERIA; ARTIFICIAL NEURAL NETWORK MODELS; METROLOGICAL PARAMETERS; MULTI-LAYERED; PERCEPTRON; POLLUTANT CONCENTRATION; RADIAL BASIS FUNCTION NEURAL NETWORKS; WIND SPEED;

EID: 84857954931     PISSN: 00207233     EISSN: 10290400     Source Type: Journal    
DOI: 10.1080/00207233.2012.644900     Document Type: Article
Times cited : (17)

References (24)
  • 3
    • 84857929693 scopus 로고    scopus 로고
    • Réseau de surveillance de la qualité de l'air 'SAMASAFIA', SAMASAFIA
    • Réseau de surveillance de la qualité de l'air 'SAMASAFIA', 2007, Bilan annuel sur la qualité de l'air. SAMASAFIA, 62-74.
    • (2007) Bilan annuel sur la qualité de l'air , pp. 62-74
  • 4
    • 0028741871 scopus 로고
    • 2nd International Conference on Air pollution, Barcelona, Computer Simulation Southampton, Boston, Computational Mechanics Publ
    • Mlakar, P. and Boznar, M., 1994, Short-term air pollution prediction on the basis of artificial neural network. 2nd International Conference on Air pollution, Barcelona, Computer Simulation Southampton, Boston, Computational Mechanics Publ., pp. 545-552.
    • (1994) Short-term air pollution prediction on the basis of artificial neural network , pp. 545-552
    • Mlakar, P.1    Boznar, M.2
  • 5
    • 85032475286 scopus 로고    scopus 로고
    • Proceedings of 3rd ed. International Conference on Intelligent Information Systems (IIS '97 Grand Bahama Island, Bahamas)
    • Mlakar, P. and Josef, S., 1997, Determination of features for air pollution forecasting models. Proceedings of 3rd ed. International Conference on Intelligent Information Systems (IIS '97 Grand Bahama Island, Bahamas), pp. 365-374.
    • (1997) Determination of features for air pollution forecasting models , pp. 365-374
    • Mlakar, P.1    Josef, S.2
  • 8
    • 0033990385 scopus 로고    scopus 로고
    • Meteorologically adjusted trends in UK daily maximum ozone concentrations
    • Gardner, M. and Dorling, S. 1999. Meteorologically adjusted trends in UK daily maximum ozone concentrations. Atmospheric Environment, 34(2): 171-176.
    • (1999) Atmospheric Environment , vol.34 , Issue.2 , pp. 171-176
    • Gardner, M.1    Dorling, S.2
  • 9
    • 0343339858 scopus 로고    scopus 로고
    • Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile
    • Pérez, P., Trier, A. and Reyes, J. 2000. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment, 34: 1189-1196.
    • (2000) Atmospheric Environment , vol.34 , pp. 1189-1196
    • Pérez, P.1    Trier, A.2    Reyes, J.3
  • 10
    • 0036708755 scopus 로고    scopus 로고
    • Prediction of maximum of 24-h average of PM10 concentrations 30 h in advance in Santiago, Chile
    • Perez, P. and Reyes, J. 2002. Prediction of maximum of 24-h average of PM10 concentrations 30 h in advance in Santiago, Chile. Atmospheric Environment, 36: 4555-4561.
    • (2002) Atmospheric Environment , vol.36 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 12
    • 19544377320 scopus 로고    scopus 로고
    • A neural network forecast for daily average PM10 concentrations in Belgium
    • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F. and Brasseur, O. 2005. A neural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment, 39(18): 3279-3289.
    • (2005) Atmospheric Environment , vol.39 , Issue.18 , pp. 3279-3289
    • Hooyberghs, J.1    Mensink, C.2    Dumont, G.3    Fierens, F.4    Brasseur, O.5
  • 13
    • 17644370689 scopus 로고    scopus 로고
    • Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning
    • Corani, G. 2005. Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecological Modelling, 185(2,4): 513-529.
    • (2005) Ecological Modelling , vol.185 , Issue.2-4 , pp. 513-529
    • Corani, G.1
  • 14
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • In: T.J. Sejnowski, G.E. Hinton and D.S. Touretzky (Eds)
    • Stork, D. and Hassibi, B., 1993, Second order derivatives for network pruning: optimal brain surgeon. In: T.J. Sejnowski, G.E. Hinton and D.S. Touretzky (Eds) Advances in Neural Information Processing Systems (NIPS), 5, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems (NIPS) , vol.5 , pp. 164-171
    • Stork, D.1    Hassibi, B.2
  • 16
    • 9944223325 scopus 로고    scopus 로고
    • Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso
    • Ordieres, J.B., Vergaraa, E.P., Capuzb, R.S. and Salazarc, R.E. 2005. Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso. Environmental Modeling and Software, 20(5): 547-559.
    • (2005) Environmental Modeling and Software , vol.20 , Issue.5 , pp. 547-559
    • Ordieres, J.B.1    Vergaraa, E.P.2    Capuzb, R.S.3    Salazarc, R.E.4
  • 17
    • 33947402188 scopus 로고    scopus 로고
    • Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
    • Beunelli, U., Piazza, V., Pignato, L., Sorbello, F. and Vitabile, S. 2007. Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Environmental Atmospheric Environment, 41(14): 2967-2995.
    • (2007) Environmental Atmospheric Environment , vol.41 , Issue.14 , pp. 2967-2995
    • Beunelli, U.1    Piazza, V.2    Pignato, L.3    Sorbello, F.4    Vitabile, S.5
  • 19
    • 84857983443 scopus 로고    scopus 로고
    • Recurrent neural network for air pollution peaks prediction for the region of Annaba, Algeria
    • Ghazi, S. and Khadir, M.T. 2009. Recurrent neural network for air pollution peaks prediction for the region of Annaba, Algeria. Proceedings of Artificial Intelligence Studies, 6: 81-92.
    • (2009) Proceedings of Artificial Intelligence Studies , vol.6 , pp. 81-92
    • Ghazi, S.1    Khadir, M.T.2
  • 21
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C.F. and Grant, P.M. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2(2): 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 22
    • 33749384318 scopus 로고    scopus 로고
    • Prediction of vapor liquid equilibrium data by using radial basis neural networks
    • Govindarajan, L. and Sabarathinam, P.L. 2006. Prediction of vapor liquid equilibrium data by using radial basis neural networks. Chem. Biochem. Eng. Q, 20(3): 319-323.
    • (2006) Chem. Biochem. Eng. Q , vol.20 , Issue.3 , pp. 319-323
    • Govindarajan, L.1    Sabarathinam, P.L.2
  • 23
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal function
    • Cybenko, G. 1989. Approximation by superposition of sigmoidal function. Math. Cont. Sig. Syst, 2: 303-314.
    • (1989) Math. Cont. Sig. Syst , vol.2 , pp. 303-314
    • Cybenko, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.