-
1
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Online. Available
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. [Online]. Available: http://www.mitpressjournals.org/doi/abs/10.1162/neco. 2006.18.7.1527
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
2
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Z. Ghahramani, Ed., ACM, Online. Available
-
H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio, "An empirical evaluation of deep architectures on problems with many factors of variation," in ICML, ser. ACM International Conference Proceeding Series, Z. Ghahramani, Ed., vol. 227. ACM, 2007, pp. 473-480. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273556
-
(2007)
ICML, Ser. ACM International Conference Proceeding Series
, vol.227
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.C.3
Bergstra, J.4
Bengio, Y.5
-
3
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
4
-
-
80053448548
-
On random weights and unsupervised feature learning
-
A. M. Saxe, P. W. Koh, K. Kavukcuoglu, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng, "On random weights and unsupervised feature learning,"in The 28th International Conference on Machine Learning, 2011.
-
The 28th International Conference on Machine Learning, 2011
-
-
Saxe, A.M.1
Koh, P.W.2
Kavukcuoglu, K.3
Chen, Z.4
Bhand, M.5
Suresh, B.6
Ng, A.Y.7
-
5
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
March Online. Available
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why does unsupervised pre-training help deep learning?"J. Mach. Learn. Res., vol. 11, pp. 625-660, March 2010. [Online]. Available: http://portal.acm.org/citation.cfm?id=1756006.1756025
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
7
-
-
0031143030
-
A new evolutionary system for evolving artificial neural networks
-
PII S1045922797027586
-
X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694-713, May 1997. (Pubitemid 127767812)
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.3
, pp. 694-713
-
-
Yao, X.1
Liu, Y.2
-
8
-
-
0033362601
-
Evolving artificial neural networks
-
Sep.
-
X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, no. 9, pp. 1423-1447, Sep. 1999.
-
(1999)
Proceedings of the IEEE
, vol.87
, Issue.9
, pp. 1423-1447
-
-
Yao, X.1
-
9
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
May 2010
-
Y. Bengio and X. Glorot, "Understanding the difficulty of training deep feedforward neural networks," in Proceedings of AISTATS 2010, vol. 9, May 2010, pp. 249-256.
-
Proceedings of AISTATS 2010
, vol.9
, pp. 249-256
-
-
Bengio, Y.1
Glorot, X.2
-
10
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
IEEE Press
-
Y. LeCun, F.-J. Huang, and L. Bottou, "Learning methods for generic object recognition with invariance to pose and lighting," in Proceedings of CVPR'04. IEEE Press, 2004.
-
(2004)
Proceedings of CVPR'04
-
-
LeCun, Y.1
Huang, F.-J.2
Bottou, L.3
-
11
-
-
84857852315
-
High-accuracy object recognition with a new convolutional net architecture and learning algorithm
-
K. Jarrett, M. Ranzato, K. Kavukcuoglu, and Y. LeCun, "High-accuracy object recognition with a new convolutional net architecture and learning algorithm," in The Learning Workshop, 2009.
-
The Learning Workshop, 2009
-
-
Jarrett, K.1
Ranzato, M.2
Kavukcuoglu, K.3
LeCun, Y.4
-
13
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
01 Online. Available
-
N. Pinto, D. D. Cox, and J. J. DiCarlo, "Why is real-world visual object recognition hard?" PLoS Comput Biol, vol. 4, no. 1, p. e27, 01 2008. [Online]. Available: http://dx.plos.org/10.1371%2Fjournal.pcbi.0040027
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.1
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
14
-
-
0001857994
-
Efficient backprop
-
G. Orr and M. K., Eds. Springer
-
Y. LeCun, L. Bottou, G. Orr, and K. Muller, "Efficient backprop," in Neural Networks: Tricks of the trade, G. Orr and M. K., Eds. Springer, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.3
Muller, K.4
-
15
-
-
77956541496
-
Deep learning via hessian-free optimization
-
J. Fürnkranz and T. Joachims, Eds. Omnipress, Online. Available
-
J. Martens, "Deep learning via hessian-free optimization," in ICML, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 735-742. [Online]. Available: http://www.icml2010.org/papers/458.pdf
-
(2010)
ICML
, pp. 735-742
-
-
Martens, J.1
-
16
-
-
10444243552
-
-
Jun. 08 Online. Available: http://www.cc.gatech.edu/people/home/ananth/ lmtut.pdf
-
A. Ranganathan, "The levenberg-marquardt algorithm," Jun. 08 2004. [Online]. Available: http://citeseer.ist.psu.edu/638988.html;http://www. cc.gatech.edu/people/home/ananth/lmtut.pdf
-
(2004)
The Levenberg-marquardt Algorithm
-
-
Ranganathan, A.1
-
17
-
-
0001824610
-
Adaptive and self-adaptive evolutionary computations
-
M. Palaniswami and Y. Attikiouzel, Eds. IEEE Press, Online. Available
-
P. J. Angeline, "Adaptive and self-adaptive evolutionary computations," in Computational Intelligence: A Dynamic Systems Perspective, M. Palaniswami and Y. Attikiouzel, Eds. IEEE Press, 1995, pp. 152-163. [Online]. Available: http://citeseer.ist.psu.edu/cache/papers/cs/1007/ http:zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzicec95.pdf/ angeline95adaptive.pdf
-
(1995)
Computational Intelligence: A Dynamic Systems Perspective
, pp. 152-163
-
-
Angeline, P.J.1
-
20
-
-
84857852316
-
Learning invariant features through local space contraction
-
vol. abs/1104.4153, informal publication. [Online]. Available
-
S. Rifai, X. Muller, X. Glorot, G. Mesnil, Y. Bengio, and P. Vincent, "Learning invariant features through local space contraction," CoRR, vol. abs/1104.4153, 2011, informal publication. [Online]. Available: http://arxiv.org/abs/1104.4153
-
(2011)
CoRR
-
-
Rifai, S.1
Muller, X.2
Glorot, X.3
Mesnil, G.4
Bengio, Y.5
Vincent, P.6
-
21
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Online. Available
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," Journal of Machine Learning Research, vol. 11, pp. 3371-3408, 2010. [Online]. Available: http://portal.acm.org/citation.cfm?id=1953039
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
22
-
-
85162523388
-
Gated softmax classification
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.
-
R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, "Gated softmax classification," in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 1603-1611.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1603-1611
-
-
Memisevic, R.1
Zach, C.2
Hinton, G.3
Pollefeys, M.4
|