메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 293-297

Hybrid evolution of convolutional networks

Author keywords

convolutional networks; evolution; image classification; neural networks; second order methods

Indexed keywords

ABSOLUTE VALUES; ARCHITECTURAL PARAMETERS; CONVOLUTIONAL NETWORKS; EVOLUTION; EVOLUTIONARY SEARCH; EXPONENTIAL INCREASE; FITNESS EVALUATIONS; HYBRID EVOLUTION; IMAGE DATASETS; LEVENBERG-MARQUARDT; LOCAL CONTRAST; NETWORK MODELS; NEURAL NETWORK MODEL; SECOND ORDERS; TIME COST;

EID: 84857883444     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLA.2011.73     Document Type: Conference Paper
Times cited : (17)

References (22)
  • 1
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Online. Available
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. [Online]. Available: http://www.mitpressjournals.org/doi/abs/10.1162/neco. 2006.18.7.1527
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 2
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • Z. Ghahramani, Ed., ACM, Online. Available
    • H. Larochelle, D. Erhan, A. C. Courville, J. Bergstra, and Y. Bengio, "An empirical evaluation of deep architectures on problems with many factors of variation," in ICML, ser. ACM International Conference Proceeding Series, Z. Ghahramani, Ed., vol. 227. ACM, 2007, pp. 473-480. [Online]. Available: http://doi.acm.org/10.1145/1273496.1273556
    • (2007) ICML, Ser. ACM International Conference Proceeding Series , vol.227 , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.C.3    Bergstra, J.4    Bengio, Y.5
  • 3
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, November 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 5
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning?
    • March Online. Available
    • D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, "Why does unsupervised pre-training help deep learning?"J. Mach. Learn. Res., vol. 11, pp. 625-660, March 2010. [Online]. Available: http://portal.acm.org/citation.cfm?id=1756006.1756025
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1    Bengio, Y.2    Courville, A.3    Manzagol, P.-A.4    Vincent, P.5    Bengio, S.6
  • 7
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • PII S1045922797027586
    • X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694-713, May 1997. (Pubitemid 127767812)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 8
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Sep.
    • X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, no. 9, pp. 1423-1447, Sep. 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 9
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • May 2010
    • Y. Bengio and X. Glorot, "Understanding the difficulty of training deep feedforward neural networks," in Proceedings of AISTATS 2010, vol. 9, May 2010, pp. 249-256.
    • Proceedings of AISTATS 2010 , vol.9 , pp. 249-256
    • Bengio, Y.1    Glorot, X.2
  • 10
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • IEEE Press
    • Y. LeCun, F.-J. Huang, and L. Bottou, "Learning methods for generic object recognition with invariance to pose and lighting," in Proceedings of CVPR'04. IEEE Press, 2004.
    • (2004) Proceedings of CVPR'04
    • LeCun, Y.1    Huang, F.-J.2    Bottou, L.3
  • 11
    • 84857852315 scopus 로고    scopus 로고
    • High-accuracy object recognition with a new convolutional net architecture and learning algorithm
    • K. Jarrett, M. Ranzato, K. Kavukcuoglu, and Y. LeCun, "High-accuracy object recognition with a new convolutional net architecture and learning algorithm," in The Learning Workshop, 2009.
    • The Learning Workshop, 2009
    • Jarrett, K.1    Ranzato, M.2    Kavukcuoglu, K.3    LeCun, Y.4
  • 13
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • 01 Online. Available
    • N. Pinto, D. D. Cox, and J. J. DiCarlo, "Why is real-world visual object recognition hard?" PLoS Comput Biol, vol. 4, no. 1, p. e27, 01 2008. [Online]. Available: http://dx.plos.org/10.1371%2Fjournal.pcbi.0040027
    • (2008) PLoS Comput Biol , vol.4 , Issue.1
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 15
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via hessian-free optimization
    • J. Fürnkranz and T. Joachims, Eds. Omnipress, Online. Available
    • J. Martens, "Deep learning via hessian-free optimization," in ICML, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp. 735-742. [Online]. Available: http://www.icml2010.org/papers/458.pdf
    • (2010) ICML , pp. 735-742
    • Martens, J.1
  • 16
    • 10444243552 scopus 로고    scopus 로고
    • Jun. 08 Online. Available: http://www.cc.gatech.edu/people/home/ananth/ lmtut.pdf
    • A. Ranganathan, "The levenberg-marquardt algorithm," Jun. 08 2004. [Online]. Available: http://citeseer.ist.psu.edu/638988.html;http://www. cc.gatech.edu/people/home/ananth/lmtut.pdf
    • (2004) The Levenberg-marquardt Algorithm
    • Ranganathan, A.1
  • 17
    • 0001824610 scopus 로고
    • Adaptive and self-adaptive evolutionary computations
    • M. Palaniswami and Y. Attikiouzel, Eds. IEEE Press, Online. Available
    • P. J. Angeline, "Adaptive and self-adaptive evolutionary computations," in Computational Intelligence: A Dynamic Systems Perspective, M. Palaniswami and Y. Attikiouzel, Eds. IEEE Press, 1995, pp. 152-163. [Online]. Available: http://citeseer.ist.psu.edu/cache/papers/cs/1007/ http:zSzzSzwww.natural-selection.comzSzpeoplezSzpjazSzdocszSzicec95.pdf/ angeline95adaptive.pdf
    • (1995) Computational Intelligence: A Dynamic Systems Perspective , pp. 152-163
    • Angeline, P.J.1
  • 20
    • 84857852316 scopus 로고    scopus 로고
    • Learning invariant features through local space contraction
    • vol. abs/1104.4153, informal publication. [Online]. Available
    • S. Rifai, X. Muller, X. Glorot, G. Mesnil, Y. Bengio, and P. Vincent, "Learning invariant features through local space contraction," CoRR, vol. abs/1104.4153, 2011, informal publication. [Online]. Available: http://arxiv.org/abs/1104.4153
    • (2011) CoRR
    • Rifai, S.1    Muller, X.2    Glorot, X.3    Mesnil, G.4    Bengio, Y.5    Vincent, P.6
  • 21
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Online. Available
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," Journal of Machine Learning Research, vol. 11, pp. 3371-3408, 2010. [Online]. Available: http://portal.acm.org/citation.cfm?id=1953039
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 22
    • 85162523388 scopus 로고    scopus 로고
    • Gated softmax classification
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.
    • R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, "Gated softmax classification," in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 1603-1611.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1603-1611
    • Memisevic, R.1    Zach, C.2    Hinton, G.3    Pollefeys, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.