메뉴 건너뛰기




Volumn , Issue , 2011, Pages 035-041

Mining rare cases in post-operative pain by means of outlier detection

Author keywords

case mining; clustering; information technology; medical informatics; post operative pain; rare cases

Indexed keywords

CLUSTERING; CLUSTERING APPROACH; ELECTRONIC PATIENT RECORD; FUZZY C-MEANS ALGORITHMS; HEALTH PROFESSIONALS; MEDICAL INFORMATICS; NON-TRIVIAL; OUTLIER DETECTION; PAIN TREATMENT; PATIENT CASE; POST-OPERATIVE PAIN; RARE CASES;

EID: 84857871506     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISSPIT.2011.6151532     Document Type: Conference Paper
Times cited : (9)

References (45)
  • 7
    • 33144480517 scopus 로고    scopus 로고
    • Comparison of clustering algorithms for analog modulation classification
    • DOI 10.1016/j.eswa.2005.07.014, PII S0957417405001521
    • H. Guldemir, and A. Sengur, Comparison of clustering algorithms for analog modulation classification, Expert Systems with Applications, vol 30, 2006, pp: 642-649 (Pubitemid 43267424)
    • (2006) Expert Systems with Applications , vol.30 , Issue.4 , pp. 642-649
    • Guldemir, H.1    Sengur, A.2
  • 9
    • 0036012375 scopus 로고    scopus 로고
    • Evaluation and comparison of clustering algorithms in anglyzing es cell gene expression data
    • G. Chen, S. A. Jaradat, N. Banerjee, T.S. Tanaka, M.S.H. Ko, M.Q. Zhang, Evaluation and comparison of clustering algorithms in anglyzing es cell gene expression data, Statistica Sinica, Vol. 12 2002, pp. 241-262
    • (2002) Statistica Sinica , vol.12 , pp. 241-262
    • Chen, G.1    Jaradat, S.A.2    Banerjee, N.3    Tanaka, T.S.4    Ko, M.S.H.5    Zhang, M.Q.6
  • 10
    • 78149283207 scopus 로고    scopus 로고
    • Revised American Pain Society Patient Outcome Questionnaire (APS-POQ-R) for quality improvement of pain management in hospitalized adults: Preliminary psychometric evaluation
    • D.B Gordon, R.C Polomano, T.A Pellino, D.C Turk, L.M McCracken, G. Sherwood, J.A Paice, M.S Wallace, S.A Strassels, J.T Farrar, Revised American Pain Society Patient Outcome Questionnaire (APS-POQ-R) for quality improvement of pain management in hospitalized adults: preliminary psychometric evaluation, Journal of Pain,11(11), 2010, pp:1172-86.
    • (2010) Journal of Pain , vol.11 , Issue.11 , pp. 1172-1186
    • Gordon, D.B.1    Polomano, R.C.2    Pellino, T.A.3    Turk, D.C.4    McCracken, L.M.5    Sherwood, G.6    Paice, J.A.7    Wallace, M.S.8    Strassels, S.A.9    Farrar, J.T.10
  • 15
    • 70449377046 scopus 로고    scopus 로고
    • A New RBF Neural Network with GA-based Fuzzy C-Means Clustering Algorithm for SINS Fault Diagnosis
    • L. Zhide, C. Jiabin, S. Chunlei, A New RBF Neural Network with GA-based Fuzzy C-Means Clustering Algorithm for SINS Fault Diagnosis, Control and Decision Conference, 2009. CCDC '09. Pp: 208 - 211
    • Control and Decision Conference, 2009. CCDC '09 , pp. 208-211
    • Zhide, L.1    Jiabin, C.2    Chunlei, S.3
  • 17
    • 46849104101 scopus 로고    scopus 로고
    • Kernelized Fuzzy Attribute C-Means Clustering Algorithm
    • L. Jingwei, & X. Meizhi, Kernelized Fuzzy Attribute C-Means Clustering Algorithm, Fuzzy Sets and Systems, vol. 159, 2008, pp: 2428 - 2445
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2428-2445
    • Jingwei, L.1    Meizhi, X.2
  • 20
    • 78651358140 scopus 로고    scopus 로고
    • Performance Evaluation of K-Means and Fuzzy C-Means Clustering Algorithms for Statistical Distributions of Input Data Points
    • T. Velmurugan, T. Santhanam, Performance Evaluation of K-Means and Fuzzy C-Means Clustering Algorithms for Statistical Distributions of Input Data Points, European Journal of Scientific Research, vol.46, No.3, 2010, pp.320-330
    • (2010) European Journal of Scientific Research , vol.46 , Issue.3 , pp. 320-330
    • Velmurugan, T.1    Santhanam, T.2
  • 23
    • 0029358115 scopus 로고
    • Parallel algorithms for hierarchical clustering
    • F. Clark, Parallel algorithms for hierarchical clustering, Parallel Computing, vol. 21, 1995, pp. 1313-1325
    • (1995) Parallel Computing , vol.21 , pp. 1313-1325
    • Clark, F.1
  • 25
    • 78650706507 scopus 로고    scopus 로고
    • Fuzzy time series prediction using hierarchical clustering algorithms
    • B. Young-Keun, & L. Chul-Heui, Fuzzy time series prediction using hierarchical clustering algorithms, Expert Systems with Applications, Vol. 38, Issue 4, 2011, pp. 4312-4325
    • (2011) Expert Systems with Applications , vol.38 , Issue.4 , pp. 4312-4325
    • Young-Keun, B.1    Chul-Heui, L.2
  • 26
    • 67650498116 scopus 로고    scopus 로고
    • Hierarchical Mixture Clustering Mixture Clustering & Its Application to GMM Based Text Independent Speaker Identification
    • R. Saeidi & H. Sadegh, Hierarchical Mixture Clustering Mixture Clustering & Its Application to GMM Based Text Independent Speaker Identification, International Symposium on Telecommunications, 2008, pp. 770-773
    • International Symposium on Telecommunications, 2008 , pp. 770-773
    • Saeidi, R.1    Sadegh, H.2
  • 27
    • 0029509840 scopus 로고    scopus 로고
    • An improved K-means clustering algorithm and application to combined multi-codebook/MLP neural network speech recognition
    • W. Fang & Q. J Zhang, An improved K-means clustering algorithm and application to combined multi-codebook/MLP neural network speech recognition, Canadian Conference on Electrical and Computer Engineering, 1995, pp. 999-1002.
    • Canadian Conference on Electrical and Computer Engineering, 1995 , pp. 999-1002
    • Fang, W.1    Zhang, Q.J.2
  • 29
    • 0041328214 scopus 로고    scopus 로고
    • K-Means: A new generalized k-means clustering algorithm
    • C. Yiu-Ming, k-Means: A new generalized k-means clustering algorithm, Letters Pattern Recognition, vol. 24, 2003, pp. 2883-2893
    • (2003) Letters Pattern Recognition , vol.24 , pp. 2883-2893
    • Yiu-Ming, C.1
  • 30
    • 77949271443 scopus 로고    scopus 로고
    • A Comparative Study of the K-Means Algorithm &Thenormal Mixture Model for Clustering: Bivariate Homoscedastic Case
    • Q. Dingxi, A Comparative Study of the K-Means Algorithm &Thenormal Mixture Model for Clustering: Bivariate Homoscedastic Case, Journal of Statistical Planning and Inference, vol. 140, 2010, pp. 1701-1711
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 1701-1711
    • Dingxi, Q.1
  • 31
    • 0034244838 scopus 로고    scopus 로고
    • Split & Merge EM Algorithm for Improving Gaussian Mixture Density Estimates
    • U. Naounori & N. Ryohei, Split & Merge EM Algorithm For Improving Gaussian Mixture Density Estimates, Journal of VLSI Signal Processing, vol. 26, 2000, pp. 133-140
    • (2000) Journal of VLSI Signal Processing , vol.26 , pp. 133-140
    • Naounori, U.1    Ryohei, N.2
  • 32
    • 84857881452 scopus 로고    scopus 로고
    • Parameter Tying and Gaussian Clustering for Faster, Better & Smaller Speech Recognition
    • S. Ananth & R.R. Venkata, Parameter Tying and Gaussian Clustering for Faster, Better & Smaller Speech Recognition, EUROSPEECH, 1999
    • EUROSPEECH, 1999
    • Ananth, S.1    Venkata, R.R.2
  • 35
    • 0027308583 scopus 로고    scopus 로고
    • An Unsupervised Gaussian Cluster Formation Technique as a Bussgang Blind Deconvolution Algorithm
    • K. Jeyhan, An Unsupervised Gaussian Cluster Formation Technique as a Bussgang Blind Deconvolution Algorithm, IEEE International Symposium on Circuits and Systems, 1993, pp. 719-722
    • IEEE International Symposium on Circuits and Systems, 1993 , pp. 719-722
    • Jeyhan, K.1
  • 38
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • M. Ujjwal, Genetic algorithm-based clustering technique, Pattern Recognition, vol. 33, 2000
    • (2000) Pattern Recognition , vol.33
    • Ujjwal, M.1
  • 39
    • 0346216900 scopus 로고    scopus 로고
    • A novel genetic algorithm for automatic clustering
    • DOI 10.1016/j.patrec.2003.09.012
    • G. Gautam & B. Chaudhuri, A novel genetic algorithm for automatic clustering, Pattern Recognition, vol. 25, 2004, pp. 173-187 (Pubitemid 38003129)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.2 , pp. 173-187
    • Garai, G.1    Chaudhuri, B.B.2
  • 41
    • 33745781159 scopus 로고    scopus 로고
    • Parallel Density-Based Clustering of Complex Objects
    • W.K. Ng et al. (eds.)
    • B. Stefan, K. Hans-Peter & P. Martin, Parallel Density-Based Clustering of Complex Objects, W.K. Ng et al. (eds.): PAKDD 2006, pp.179-188
    • PAKDD 2006 , pp. 179-188
    • Stefan, B.1    Hans-Peter, K.2    Martin, P.3
  • 43
    • 67649500199 scopus 로고    scopus 로고
    • ART Neural Network Based Clustering Method Produces Best Quality Clusters of Fingerprints in Comparison to Self Organizing Map & K-Means Clustering Algorithms
    • G. Bhupesh, ART Neural Network Based Clustering Method Produces Best Quality Clusters of Fingerprints in Comparison to Self Organizing Map & K-Means Clustering Algorithms, International Conference on Innovations in Information Technology, 2008, pp. 282-286
    • International Conference on Innovations in Information Technology, 2008 , pp. 282-286
    • Bhupesh, G.1
  • 44
  • 45
    • 34047249266 scopus 로고    scopus 로고
    • NOCEA: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases
    • A. Ioannis, W. Phil, A. Trinder, NOCEA: A rule-based evolutionary algorithm for efficient and effective clustering of massive high-dimensional databases, Applied Soft Computing, vol. 7, 2007, pp. 668-710.
    • (2007) Applied Soft Computing , vol.7 , pp. 668-710
    • Ioannis, A.1    Phil, W.2    Trinder, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.